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Square-Root Operator Quantization
and Nonlocality: A Review

Kh. Namsrai1,2,3,4 and H. V. von Geramb3

A square-root-operator formalism is developed for quantum systems described with
nonrelativistic and relativistic equations of motion. Spectral representation for Green’s
functions are designed for particles with spin 0, with the implication of its generalization
to other spin values. Nonlocal operators suggest that a duality exists between physical
particles and dual partners, which are tachyonic mathematical particles. It is shown that
nonlocal operators result naturally from square-root operators, with the implication that
microcausality holds only asymptotically. Applications help enlighten the formalism in
order to envisage realistic situations with Schr¨odinger equations, Higgs fields, vacuum
fluctuations, extra-dimensional methods in the potential theory, and electromagnetic
interactions of extended charges and their consequences. It turns out that the innermost
structure of these extended charges is associated with nonlocal photon propagators.
It is shown that the propagator arisen from the charged torus potential consists of two
different parts: a nonlocal photon propagator and a propagator of neutrino-like particles,
which is described by square-root-operator equation. We examine the potential of the
torus and its propagator as the appearance of superfields in terms of the photon and the
massless fermion (photino).

The concept of extended and nonlocal objects as well as their interactions
receives rising interest in physics and mathematics. String theory is an exam-
ple for which far-reaching, detailed studies exist (Greenet al., 1986; Polchinski,
1998). Nonlocality is a feature of quantum field theory (QFT), which was already
realized in its infant stage when the ultraviolet divergence terms arose. If we char-
acterize the electron size with a parameter`, its classical field energy is∼e2/`,
whereas in QFT it is∼e2me log`me. For a pointlike electron with̀ → 0, both
values diverge and thus lose their meaning. One possible way out of this diver-
gence problem is to take refuge in nonlinearity and, in particular, nonlocality. The

1 Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia.
2 Physics Department, Ulaanbaatar University, Ulaanbaatar-51, Mongolia.
3 Theoretische Kernphysik, Universit¨at Hamburg, Luruper Chaussee 149, 22761 Hamburg.
4 To whom correspondence should be addressed at Institute of Physics and Technology, Mongolian
Academy of Sciences, Ulaanbaatar-51, Mongolia.

1929

0020-7748/01/1100-1929$19.50/0C© 2001 Plenum Publishing Corporation



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP233-343695 September 11, 2001 9:11 Style file version Nov. 19th, 1999

1930 Namsrai and von Geramb

consequence is that differential equations become integro-differential equations.
In case of the Schr¨odinger equation, the potential operator becomes an integral
operator.

If we use a relativistic relation between momentum and energy, classically

E =
√

p2+m2, (1)

as operator5

i
∂

∂t
=
√

m2−∇2. (2)

The square-root operator is not defined inr space, and a Fourier transformation
(FT) into ak-space representation is used in common practice.

The assumption of pointlike masses and charges also cause essential difficul-
ties, since pointlike is effectively represented only by a distribution, in particular,
by a Diracδ function,

ρm(x) = mδ(x), ρe(x) = eδ(x). (3)

This representation already yields the key paths for its handling in practice. In
Section 10 we summarize the salient features of distributions with important results
and relations, which shall be used throughout this text.

At this stage, the mathematical developments are rather complete, but their
practical application and the resulting physical interpretation are less well estab-
lished. In case of integral equations, proofs of convergence and efficient represen-
tations in terms of Fourier series are still popular topics in mathematical physics.
Among choices of relativistic form factors (Efimov, 1977, and Namsrai, 1986),
replacements like

1

m2− p2− i ε
→ K 2

` (−p2`2)

m2− p2− i ε
(4)

are often used. In these notes we shall outline and discuss several such schemes
for problems associated with nonlocality in particle physics.

Already in the early developments of quantum mechanics occur square-root
operators. In particular, it was the relativistic relation between energy and mo-
mentum in a coordinate space representation that hindered its use (Weyl, 1927).
A review of the early and later works are contained in Smith (1993). Today, in
bound-state problems of two- and three-quark systems the Salpeter equation is
often used (Castorinaet al., 1984; Friar and Tomusiak, 1984; Nickischet al., 1984).
Furthermore, problems associated with binding in very strong fields (Hardekopf
and Sucher, 1985; Papp, 1985), string theory (Fiziev, 1985; Kaku, 1988), and

5 Units withc = 1 andh = 1 are used throughout.
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astrophysical black holes (Berezin, 1997a,b; Berezinet al., 1998) are application
areas. Green’s functions for differential equations of infinite order like√

m2− ¤D(x) = −δ(4)(x) (5)

are treated in Namsrai (1998). There exist essential differences to Green’s functions
of the second-order d’Alembert operator. This differences is the nonlocality that
describes self-interactions of particles. As a typical example consider the free cases

i
∂ψ(x)

∂t
=
√

m2−∇2ψ(x) (6)

and √
m2− ¤ϕ(x) = 0. (7)

A binomial expansion of the square root yields formally an integral equation∫
d4y K`m(x − y)ϕ(y) = 0

with a kernel containing the Diracδ function

K`m(x) =
[
m+ m

2

∞∑
n=0

Cn
(−`2

m

)n+1¤n+1

]
δ(4)(x)

and

Cn = (−1)n
(2n)!

n!(n+ 1)!
2−2n.

To this point, the boundary conditions are not specified and the expansion has only
a formal meaning. The length parameter is introduced with the implication that
it links the Compton wavelength̀m = h/mc of a particle with its massm. The
expression suggests a nonlocal nature of particles whose properties are influenced
by a self-interaction without an external cause. The hitherto not specified boundary
conditions raise essential difficulties—some of which are discussed in detail with
their physical implications.

In Section 1 we consider scalar particles and construct Green functions and
solutions. Section 2 is devoted to another representation of the Green’s function
and emphasis is put on stochasticity of space and time connected with a particle
and plane wave solution. Quantization of nonlocal fields is the topic of Section 3.
Commutation relations, Pauli–Jordan functions, and properties of Green’s func-
tions for local field equations are recalled and compared with the nonlocal field
results. The static limit (x0 = 0) is studied in Section 4 in which the classical
Yukawa potential result is generalized for extended particles. Section 5 is devoted
to an infinite-order Schr¨odinger equation in momentum space. In Section 6, an
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exact solution of the one-dimensional Schr¨odinger equation and its asymptotic be-
havior is discussed. The discrete spectrum and properties of the ground-state wave
function are considered in Section 7. In Section 8, some applications to Higgs
fields are given. In Sections 9 and 10 we discuss some mathematical representa-
tions and basic concepts of generalized functions. In Sections 11, 12, and 13 we
study vacuum fluctuations, extra-dimensional methods in the potential theory, and
electromagnetic interactions of extended electrical charges and their consequences,
as physical applications of the square-root operator formalism. In Section 14 the
square-root nonlocal quantum electrodynamics is constructed. Section 15 deals
with concrete structures of extended charges and these are associated with non-
local potentials and photon propagators. We also discuss here the potential of the
torus and its nonlocal photon propagator as the appearance of superfields in terms
of the photon and the massless fermion (photino).

1. EQUATION OF MOTION FOR SCALAR PARTICLES

1.1. Square-Root Klein–Gordon Equation

Let us consider the nonlocal field equation (7) and its Green function in
momentum representation

Ä̃c(p) = − 1√
m2− p2− i ε

=
∫ m

−m
dλ ρm(λ)S̃(λ, p̂) (8)

where the distribution

ρm(λ) = 1

π
(m2− λ2)−

1
2 (9)

has properties like∫ m

−m
ρm(λ) dλ = 1,

∫ m

−m
dλ λρm(λ) = 0,

∫ m

−m
dλ λ2ρm(λ) = 1

2
m2. (10)

And

S̃(λ, p̂) = 1

i

λ+ p̂

λ2− p2− i ε
(11)

is the Dirac spinor propagator with random massλ in momentum space. In expres-
sion (8) we have used the Dirac relationm2− p2 = (m− p̂)(m+ p̂), the relation
p̂ = γ ν pν , and the Feynman parametric formula

1

an1bn2
= 0(n1+ n2)

0(n1)0(n2)

∫ 1

0
dx xn1−1(1− x)n2−1 1

[ax+ b(1− x)]n1+n2
. (12)
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In our casen1 = n2 = 1/2 and0(1/2)= √π . The Green’s function (8) inx space
takes the form

Äc(x − y) =
∫ m

−m
dλ ρm(λ)Sc(x − y, λ), (13)

where

Sc(x − y, λ) = 1

(2π )4i

∫
d4 p e−i p(x−y) p̂+ λ

λ2− p2− i ε
(14)

is the Dirac spinor propagator of the random massλ.
On the other hand, the propagator of the nonlocal fieldϕ(x) has the

representation

ϕ(x) =
∫ m

−m
dλ ρm(λ)ψ(x, λ), (15)

whereψ(x, λ) is the Dirac spinor with random massλ, which can be obtained
from theT Product

Äc(x − y) = 〈0|T{ϕ(x)ϕ∗(y)}|0〉

=
∫ m

−m

∫ m

−m
dλ1 dλ2 ρm(λ1)ρm(λ2)〈0|T{ψ(x, λ1)ψ̄(y, λ2)}|0〉. (16)

It is natural to assume that

〈0|T{ψ(x, λ1)ψ̄(y, λ2)}|0〉 = δ(λ1− λ2)Sc(x − y, λ1)

ρm(λ1)
, (17)

whereSc(x, λ) is given by expression (14). Thus definition (16), with the covariance
property (17), yields relation (13). We derive from formulas (13)–(17) that the
square-root Klein–Gordon equation (7) describes an extended field (15) with the
propagator (13) and the finite mass distribution (9).

1.2. Square-Root Double Klein–Gordon Equation

Next, we consider the square-root nonlocal equation√
(m2− ¤)(m2+ ¤)φ(x) = 0. (18)

This equation is invariant under the transformationm→ im. It relates a mathemat-
ical particle, a tachyon, and its dual physical particle partner. The Green function
in momentum space is

D̃c(p) =
∫ m2

−m2
dλ ρm2(λ)1̃c

(
p,
√
λ
)
, (19)
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where

ρm2(λ) = 1

π
(m4− λ2)−

1
2 . (20)

The propagator of the scalar particle with random mass
√
λ is

1̃c
(
p,
√
λ
) = 1

i

1

λ− p2− i ε
.

For Eq. (18), expressions (13), (15), and (17) take the following forms

Dc(x − y) =
∫ m2

−m2
dλ ρm2(λ)1c

(
x − y,

√
λ
)
, (21)

φ(x) =
∫ m2

−m2
dλ ρm2(λ)σλ(x), (22)

and

Dc(x − y) = 〈0|T{φ(x)φ(y)}|0〉

=
∫ m2

−m2

∫ m2

−m2
dλ1 dλ2 ρm2(λ1)ρm2(λ2)〈0|T [σλ1(x)σλ2(y)]|0〉, (23)

whereσλ(x) is the scalar local field with mass
√
λ, satisfying

〈0|T [σλ1(x)σλ2(y)]|0〉 = δ(λ1− λ2)1c
(
x − y,

√
λ1
)

ρm2(λ1)
(24)

with properties as given in (17). In expressions (21) and (24), the scalar particle
propagator

1c
(
x,
√
λ
) = 1

(2π )4

1

i

∫
d4 p e−i px 1

λ− p2− i ε
(25)

is used.

2. STOCHASTICITY OF SPACE–TIME

2.1. Nonlocality and Fluctuation in Space–Time Points

Here we use another (but equivalent) representation for Green functions and
solutions as obtained in Section 1,

Äc(x − y) =
∫ 1

−1
dλ ρ(λ)Sc(x − y, mλ)
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and (26)

Dc(x − y) =
∫ 1

−1
dλ ρ(λ)1c

(
x − y, m

√
λ
)
,

whereλ plays the role of a random parameter. Solutions (15) and (22) are rewritten
in the forms

ϕ(x) =
∫ 1

−1
dλ ρ(λ)ψ(x, mλ)

and (27)

φ(x) =
∫ 1

−1
dλ ρ(λ)σ

(
x, m
√
λ
)
.

It can be verified that expressions (26) and (27) can be interpreted in terms of
fluctuating space–time points

Äc(x − y) =
∫ 1

−1
dλ ρ(λ)λ3Sc(λ(x − y)),

(28)

Dc(x − y) =
∫ 1

−1
dλ ρ(λ)λ1c

(√
λ(x − y)

)
,

and

ϕ(x) =
∫ 1

−1
dλ ρ(λ)λ

3
2ψ(xλ),

(29)

φ(x) =
∫ 1

−1
dλ ρ(λ)λ

1
2σ
(
x
√
λ
)
.

In expressions (26)–(29) we used the distribution

ρ(λ) = 1

π
(1− λ2)−

1
2 . (30)

The space–time pointsxλ andx
√
λ have the meaning

xλ = xoλ, xλ
(31)

x
√
λ = xo

√
λ, x
√
λ.

In Eqs. (28), the functionsSc(λx) and1c(x
√
λ) correspond to local propagators of

spinor fieldsψ(xλ) and a scalar particleσ (x
√
λ) in (29) with massm, respectively.
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In the given case,T products or covariances (17) and (24) do not change

〈0|T{ψ(xλ1)ψ̄(yλ2)}|0〉 = δ(λ1− λ2)Sc(λ1(x − y))

ρ(λ1)
(32)

〈0|T{σ (x√λ1
)
σ
(
y
√
λ2
)}|0〉 = δ(λ1− λ2)1c

(√
λ1(x − y)

)
ρ(λ1)

.

A physical interpretation of expressions (28) and (29) implies that nonlocal
operators induce fluctuations of particle space–time coordinates, with weightλ or√
λ for spin 1/2 and 0 particles respectively. The distributionρ(λ), defined in (30),

does not depend on the spin statistics.

2.2. Plane Wave Solutions

The functionsσ (x
√
λ) andψ(xλ) in (29) satisfy the Klein–Gordon and the

Dirac equations. Here we study nonlocal fields for these equations. With the usual
Dirac plane wave solution

ψp(xλ) = u(k)√
2ko

1

(2π )
3
2

e−ikxλ, ko =
√

m2+ k2, (33)

we representϕ(x) in (29) in the form

ϕp(x) = u(k)√
2ko

1

(2π )
3
2

∫ 1

−1
dλ ρ(λ)λ

3
2 e−ikxλ. (34)

Some calculations yield an expression in terms of confluent hypergeometric func-
tions like

ϕp(x) = u(k)√
2ko

1− i

6

02
(

1
4

)
(2π )2

{
1F2

(
5

4
;

1

2
;

7

4
;− (kx)2

4

)
+ 1F2

(
7

4
;

3

2
;

9

4
;− (kx)2

4

)
72π2

504
(

1
4

) (kx)

}
. (35)

The plane wave functionsφ(x) in (29) for the case

σp
(
x
√
λ
) = (2π )−

3
2 (2ko)−

1
2 e−ikx

√
λ (36)

encounter some difficulties due to the factor
√
λ in (36). To handle this problem,

we transform the functions like

φp(x) = N
∫ 1

−1
dλ ρ(λ)λ

1
2 e−i3

√
λ
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into the form

φp(x) = 2N

[ ∫ 1

0
du u2ρ(u2)(ie3u + e−i3u)

]
(37)

with

N = (2π )−
3
2 (2ko)−

1
2 , 3 = kx.

Differentiation of (37) for3, followed by integration by parts yields

∂φp

∂3
= i

π
N3

[ ∫ 1

0
du
√

1− u4(e3u + ie−i3u)

]
.

With the expansion, whose details are found in Section 5,√
1+ u2 = 1+ 1

2

∞∑
n=0

(−1)n
(2n)!

n!(n+ 1)!

u2n+2

22n
(38)

we get

φp(x) = i

π
N

{
π

2

[
Q(3)+

∫
d3 (L1(3)− L1(−i3))

]

+ 1

2

∞∑
n=0

(−1)n(2n)!

n!(n+ 1)!

1

22n

[
1

2
B

(
n+ 3

2
,

3

2

)∫
d3 ·3

×
(

1F2

(
n+ 3

2
;

1

2
, n+ 3;

32

4

)
+ i1F2

(
n+ 3

2
;

1

2
, n+ 3;−3

2

4

))
+ 1

2
B

(
n+ 2,

3

2

)∫
d3 ·32

(
1F2

(
n+ 2;

3

2
, n+ 7

2
;
32

4

)
+ 1F2

(
n+ 2;

3

2
, n+ 7

2
;−3

2

4

))]}
+ const., (39)

whereQ(3) = i I o(−i3)− Io(3) andB(x, y) = 0(x)0(y)/0(x + y); L1(x) and
Io(x) are modified Struve and modified Bessel functions, respectively.

3. QUANTIZATION OF SQUARE-ROOT THEORY

3.1. Commutation Relations of Nonlocal Fields

The free fieldsϕ(x) andφ(x), which obey Eq. (7) and (18), become operator-
valued and contain positive and negative frequency partsϕ(x) = ϕ+(x)+ ϕ−(x)
andφ(x) = φ+(x)+ φ−(x). In this section we investigate their commutation re-
lations and Green functions.

Representation (27) is convenient when we work with quantized fieldsϕ(x)
andφ(x). We consider here only scalar particles. First we notice that definitions
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(16) and (23) forT-product operators, as well as properties (17) and (24), remain
valid. The usual product of quantized fieldsφ(x) in (27), σ (x, m

√
λ) = σ (x, λ)

combined with the stochastic average, or expectation value, ofσ is

[φ(x)φ(y)]E =
∫ 1

−1

∫ 1

−1
dλ1 dλ2 ρ(λ1)ρ(λ2) Expec{σ (x, λ1)σ (y, λ2)}, (40)

where

Expec{σ (x, λ1)σ (y, λ2)} = δ(λ1− λ2)σ (x, λ1)σ (y, λ2)

ρ(λ1)
(41)

has the form given in (24). The commutator of field operatorsφ(x) takes the form

[φ(x), φ(y)]− =
∫ 1

−1

∫ 1

−1
dλ1 dλ2 ρ(λ1)ρ(λ2) Expec[σ (x, λ1), σ (y, λ2)]. (42)

Making use of (41) one gets

D(x − y) = D+(x − y)+ D−(x − y) = [φ(x), φ(y)]−

=
∫ 1

−1
dλ ρ(λ)1(x − y, λ), (43)

where1(x − y, λ) is the Pauli–Jordan function of the scalar particle, with a mass
m
√
λ (Bogolubov and Shirkov, 1980), and

1(x, λ) = 1

2π i
ε(xo)δ(χ )− m

√
λ

4π i
√
χ
θ (χ )ε(xo)J1

(
m
√
λχ
)
, χ = (xo)2− x2.

(44)

3.2. Green Functions of Nonlocal Operators

We use the Green function of the fieldφ(x) in (26)

Dc(x − y) =
∫ 1

−1
dλ ρ(λ)1c(x − y, λ). (45)

Here

1c(x, λ) = 1

4π i
δ(χ )− m

√
λ

8π i
√
χ
θ (χ )

[
J1
(
m
√
λχ
)− i N1

(
m
√
λχ
)]

+ m
√
λ

4π2
√−χ θ (−χ )K1

(
m
√
−λχ). (46)

Retarded and advanced propagators for square-root scalar particle are defined as

Dadv(x − y) =
∫ 1

−1
dλ ρ(λ)1adv(x − y, λ)
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and

Dret(x − y) =
∫ 1

−1
dλ ρ(λ)1ret(x − y, λ). (47)

Here

1adv(x) = 1ret(−x) = 1

2π i
θ (−xo)

{
δ(χ )− m

√
λ

2
√
χ
θ (χ )J1

(
m
√
λχ
)}
. (48)

Finally, definition ofD±(x) in (43) is

D±(x) =
∫ 1

−1
dλ ρ(λ)1±(x, λ). (49)

Next, we study these functions in the light cone neighborhood to verify properties
of singularities. Using a decomposition of the cylindrical Bessel functions in (44),
(46), and (48) one finds

1(x, λ) = 1

2π i
ε(xo)δ(χ )− m2λ

8π i
ε(xo)θ (χ )+ O(χ ),

1c(x, λ) = 1

4π i
δ(χ )− 1

4π2

1

χ
− m2λ

16π i
θ (χ )+ m2λ

8π2
log

m
√
λ|χ | 12
2

+O
(√|χ | log |χ |), (50)

1ret(x, λ) = 1

2π i
θ (xo)δ(χ )− m2λ

8π i
θ (x)θ (χ )+ O(χ ),

and

1±(x, λ) = 1

4π i
ε(xo)δ(χ )± 1

4π2χ
∓ m2λ

8π2
log

m
√
λ|χ | 12
2

− m2λ

16π i
ε(xo)θ (χ ).

It is verified that singularities associated with the mass terms disappear after inte-
gration overλ in (43), (45), (47), and (49). Remaining singularities are connected
with space–time properties only, and the removal of these singularities requires a
careful treatment of the space–time structure at short distances. This problem is
beyond the scope of this work.

3.3. Causality

One of the principle requirements of quantum field theory is the satisfaction
of causality (Bogolubov and Shirkov, 1980). Generally, there are two types of
causality conditions to consider.
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1. Microcausality is manifest as a requirement imposed on the Heisenberg
fieldsσ (x), which must be locally commutable

[σ (x), σ (y)]− = 0

in a spacelike regionx ∼ y. As microcausality condition for theSmatrix

δ

δσ (x)

(
δS

δσ (y)
S+
)
= 0 for x ≤ y.

2. Macrocausality is equivalent to the requirement that “effective wave
packet”

φ(x) =
∫

d4y K(x − y)σ (y)

fall off rapidly when the functionσ (x) describing the “initial wave packet”
falls off rapidly outside regionGσ (Efimov, 1977; Namsrai, 1986).

It is surprising that the theory, based upon the square-root Klein–Gordon
operator, has microcausal validity. This follows directly from the representa-
tion (43) with (44). The usual local Pauli–Jordan function (44) vanishes out-
side the light coneχ = x2

o − x2 < 0 for any massm
√
λ. As a consequence, all

(anti)commutators of the nonlocal field operators (27) tend to zero when their ar-
guments are separated by a spacelike interval, all in accordance with the formula
(43). Its physical consequence is that events are independent if they are separated
by spacelike intervals.

4. NEW POTENTIALS

Photon exchange generates the electromagnetic interaction whereas boson
exchanges are responsible for the strong short-range nuclear forces. In particular,
the Coulomb and Yukawa potentials are related to single photon and single pion
propagators in the static limit

Uc(r ) = e

(2π )3

∫
dp ei pr 1

p2
= e

4πr
, (51)

UY(r ) = g

(2π )3

∫
dp ei pr 1

m2+ p2
= g

4πr
e−mr. (52)

In analogy, if there exist forces due to exchange of nonlocal field particles, from
Eqs. (7) and (18) follows

U1(r ) =
( g1

m

)
(2π )3

∫
dp ei pr 1√

m2+ p2
, (53)
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U2(r ) = g2

(2π )3

∫ 1

−1
dλ ρ(λ)

√
λ

∫
dp ei pr

√
λ 1

m2+ p2
. (54)

In the latter, we used representation (28) inR3 space

Dc(x) =
∫ 1

−1
dλ

1

λ
ρ(λ)1c

(
x
√
λ
)
, (55)

where

1c
(
x
√
λ
) = λ

√
λ

(2π )3

∫
dp

1

m2+ p2
ei px
√
λ. (56)

After some calculations, we find

U1(r ) = 1

2π2r
g1K1(mr) (57)

and

U2(r ) = mg2 f (x), x = mr. (58)

Here

f (x) = 1

4π2x

∫ 1

0

dλ√
1− λ2

(
e−x
√
λ + cosx

√
λ
)
. (59)

Asymptotically, the behavior of (57) is given by

U1(r ) =


1

2π2r 2

g1

m
r → 0

1

(2πr )
3
2

1√
m

e−mr r →∞.
(60)

The function (59) has a series representation inx like

f (x) = 1

8πx
√
π
{−F1(x)+ F2(x)}, (61)

where

F1(x) =
∞∑

n=1

0
(

2n− 1
4 + 1

2

)
0
(

2n− 1
4 + 1

) x2n−1

(2n− 1)!

and

F2(x) =
∞∑

n=0

0
(

1+ n
2

)
0
(

n
2 + 1

) (1+ (−1)n)
x2n

(2n)!
.

Notice, the equivalent local potentialU2(r ) (58) is an oscillatory function and,
different from commonly used potentials, is periodically attractive and repulsive
(see Fig. 1).
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Fig. 1. Behavior of the potentialU2(c) = f (c), (c = mr).

5. SCHRÖDINGER EQUATION WITH NONLOCAL POTENTIAL

The usual Schr¨odinger equation is an approximation with respect to a nonlocal
potential case

i
∂ψ

∂t
=
√

m2−∇2ψ +Uψ, (62)

whereU (r ) is a local potential, like the point charge Coulomb potential

U = −e2

r
. (63)

Equation (62), with generalized potentials, can be written with a series represen-
tation like √

m2−∇2 = m+
√
−∇2

∫ ∞
0

dλ

λ
e−mλJ1

(
λ
√
−∇2

)
. (64)

Making use of the series

J1
(
λ
√
−∇2

) = λ
√−∇2

2

∞∑
n=0

(−1)n

n!(n+ 1)!

(
−λ

2∇2

4

)n

,

we get an infinite order differential equation

i
∂ψ

∂t
= (m+U )ψ + m

2

∞∑
n=0

(−1)n(2n)!

n!(n+ 1)!
2−2n

(−`2
m∇2

)n+1
ψ, (65)

where`m = h/mc is the Compton wavelength of the particle with massm.
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It should be noted that the plane waveψp ∼ e−i Et+i px, E =
√

m2+ p2 satis-
fies (62) withU = 0. For the stationary case

ψ = e−i Etψ(x), (66)

Eq. (65) assumes the form

(E −m−U )ψ(x) =
∫

dy K`m(x− y)ψ(y), (67)

where

K`m(x− y) = K`m

(−`2
m∇2

)
δ(3)(x − y)

is a generalized function. Here

K`m

(−∇2`2
m

) = m

2

∞∑
n=0

Cn
(−∇2`2

m

)n+1
(68)

with Cn = (−1)n(2n)!2−2n/[n!(n+ 1)!].
Fourier transformation of Eq. (67), with the potential (63), yields its form in

momentum space. In this representationp̂ andx̂ are

p̂ψp = pψp, x̂ψp = i
∂

∂p
ψp,

whereψp is the wave function in momentum representation. The operatorr̂−1 is
not well defined. However, its ambiguity can be removed by adding suitable terms
to the potential that are proportional to aδ function and its derivatives at the origin.
Similarly, we can multiply the equation by the operatorr̂ from the left. Thus we
get (ψp = ψ̃(p))√(

i
d

dpx

)2

+
(

i
d

dpy

)2

+
(

i
d

dpz

)2{[√
m2+ p2− E

]
ψ̃(p)

} = e2ψ̃(p) (69)

6. SCHRÖDINGER EQUATION ON THE LINE

In one dimension, Eqs. (67) and (69) are simplified like

(E −m−U )ψ(x) = − 1

2π

∫ ∞
0

dλ e−mλ
∫ 1

−1
dt(1− t2)

1
2

d2

dx2

× [ψ(x + λt)+ ψ(x − λt)] (70)

and

i
d

dp

{[√
m2+ p2− E

]
ψ̃(p)

} = e2ψ̃(p). (71)
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Let us investigate Eq. (71) in detail. Differentiation of (71) gives

d

dp
log ψ̃ =

[
−ie2− p√

m2+ p2

][√
m2+ p2− E

]−1
(72)

Further, changing variablep = msinht and carrying out integration, one gets

logcψ = 1

i
e2
∫

dt cosht

cosht − E
m

−
∫

dt sinht

cosht − E
m

(73)

Herec is a integration constant and we distinguish the two cases as

i. E/m < 1 (74)
ii. E/m≥ 1.

Then, the first case gives

ψd(x) = 1√
2π

∫ ∞
−∞

dpψ̃(p) eipx = const√
2π

∫ ∞
−∞

dp eipx

(
p

m
+ Q

)−ie2

1

Q− E
m

×
{
θ (−p) exp

−ie2 E

m

1√
1− E2

m2

arcsin

(
1− E

m Q

Q− E
m

)

+ θ (p) exp

ie2 E

m

1√
1− E2

m2

arcsin

(
1− E

m Q

Q− E
m

) , (75)

where Q =
√

1+ p2/m2. After some transformations we obtain an equivalent
form

ψd(x) = const√
2π

∫ ∞
0

dp

Q− E
m

eipx

(
p

m
+ Q

)−ie2
 i (1− E

m Q)+
√

p2

m2γ

Q− E
m


E
m

e2

γ

+ e−i px

(
Q− p

m

)−ie2
 i (1− E

m Q)+
√

p2

m2γ

Q− E
m

−
E
m

e2

γ

 . (76)

Hereγ =
√

1− E2/m2. For the second case in (74) we have

ψc(x) = const√
2π

∫ ∞
−∞

dp eipx

(
p

m
+ Q

)−ie2

1

Q− E
m

[
1− E

m + γ ′mp (Q− 1)

1− E
m − γ ′mp (Q− 1)

]η
,

(77)

whereγ ′ =
√

E2/m2− 1 andη = −i (E/m)(e2/γ ′).
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The expressions (75) and (77) describe wave functions of discrete and con-
tinuous spectra. The saddle point method gives the asymptotic behaviors of the
solution (75) atx→±∞

ψd(x) ∼ const
m

e

√
2πE

(m2− E2)
1
4

e−mγ x

(
E

m
+ i γ

)−ie2

[
2i

mx

e2
γ 2

] E
m

e2

γ

+
[
2i

mx

e2
γ 2

]− E
m

e2

γ

+ const

(
−m

e
i

)√
2π

m
e2x−

3
2 e−mx(i )−ie2

×

[
−i

m

E
(1+ γ )

] E
m

e2

γ

+
[
−i

E

m
(1+ γ )

]− E
m

e2

γ

 (78)

for x→+∞ and

ψd(x) ∼ const
m

e
i

√
2πE

(m2− E2)
1
4

(
E

m
− i γ

)−ie2

emγ x


[
2i

mx

e2
γ 2

] E
m

e2

γ

+
[
2i

mx

e2
γ 2

]− E
m

e2

γ

+ const

(
−m

E

)√
2π

m
x−

3
2 e2(−i )−ie2

emx

×

[
−m

E
i (1+ γ )

] E
m

e2

γ

+
[
−m

E
i (1+ γ )

]− E
m

e2

γ

 (79)

for x→−∞. These asymptotic boundary conditions determine the physical wave
functions, i.e., they decrease rapidly at infinity.

7. DISCRETE SPECTRUM AND GROUND-STATE WAVE FUNCTION

The fundamental solution (75), with boundary conditions (78) and (79), shows
that wave function of the Schr¨odinger equation (70) is an analytic function only if

E

m

e2√
1− E2

m2

= n, n = 1, 2,. . . (80)

They yield the discrete spectrum, or bound-state energies

E = − m√
1+ e4

n2

. (81)
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For weak coupling (e2 is small), we obtain Bohr’s results for hydrogen-like atoms
(e2→ Ze2). With the nonlocal Schr¨odinger equation, we determine the spectrum
from the analytic properties of the solutions. On the other hand, in the strong
coupling limit e2→ g2À 1 the discrete energy spectrum isE = −mn/g2 for
some fixednf ≤ g2 wheren ≤ nf .

The ground-state wave function, withn = 1 in the nonlocal Schr¨odinger
equation solution, is

ψ1(x) = const√
2π

∫ ∞
−∞

dp eipx

(
p

m
+ Q

)−ie2

√
p2

m2γ(− E
m + Q

)2 + g(x), (82)

where

g(x) = const√
2π

i
∫ ∞

0
dp

(
1− E

m Q
)(− E

m + Q
)2[eipx

(
p

m
+ Q

)−ie2

−e−i px

(
− p

m
+ Q

)−ie2]
. (83)

The integrals are evaluated by contour integration and Cauchy’s formula

ψ1(x) =


√

2π i const · E2 e−mxγ

(
E

m
+ i γ

)−ie2

N(x)+ g(x) for x > 0;

−√2π i const · E2 emxγ

(
E

m
− i γ

)−ie2

N(x)+ g(x) for x < 0.

Hereg(x) is given by (83) andN(x) = (x − 1
E e2+ m

E2γ ). Finally, the free motion
wave functions (e2 = 0) and continuous spectrum for the nonlocal Schr¨odinger
equation (70) is discussed. More details are given in Section 9.3. Standing wave
Coulomb solutions are

ψf (x) = −const · 2
√

2πmE
sinkx

k
(84)

and

ψc(x) = const√
2π

m2(−1)ie
2 E

k

∫ ∞
−∞

dp eipx

(
p

m
+ Q

)−ie2 E
m + Q

(p+ k)

× (p− k)−1−ie2 E
k

[
p

m
E +mγ ′Q

]ie2 E
k

, (85)

wherek = √E2−m2. We see that the wave function of the free motion is the
standing plane wave with the wave numberk, and the wave function of the
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continuous spectra has an essential singular branch point atp = k. The infinite
degeneracy of all positive-energy levels is the result of the infinite order of the
nonlocal Schr¨odinger equation.

8. HIGGS FIELDS

Today, a Higgs particle, even if it has not been verified experimentally, is
part of the standard model of electro-weak interactions and is supposed to explain
the mass of particles by a spontaneous symmetry-breaking mechanism. The direct
search at the LEP for the Higgs boson excludes Higgs masses below∼95.2 GeV
(European Physical Society [EPS], 2000; Janot, 1997). Unitarity of the scattering
amplitude requires a cutoff3 (Altarelli and Isidori, 1994), which imposes an up-
per bound on the Higgs mass. For the minimal value3 ∼ 1 TeV, the upper bound
on the Higgs mass (mH) is ≤700 GeV, for3 ∼MGUT, which is∼1016 GeV, the
Higgs mass has to be smaller than∼200 GeV (see also Namsrai, 1996a,b). In the
last years, minimal supersymmetric extensions of this problem were also exten-
sively discussed (Haberet al., 1997). We have already examined in some detail
implications of the nonlocality with the Klein–Gordon equation. There, it turns
out that square-root operators have a physical meaning in terms of self interac-
tions and some exact solutions are known. Alternatively, the physics generated by
square-root operators may also be interpreted in terms of stochastic space–time
motion. Equations (7) and (18) describe spinor and scalar fields with random mass
distributions. In the massless case, Eqs. (7) and (18) describe neutrinos and pho-
tons, and dipole potentials (Ud ∼ 1/r 2) or Coulomb potentials (Uc ∼ 1/r ) enter.
However, we notice that a representation of square-root operators, using nonlocal
generalized functionK`m(x) in (68), works only well for superheavy particles like
t quarks and Higgs particles, since in this case the parameter` = h/mcbecomes
small. While, for massive neutrinos, axions, and other very light supersymmetric
particles we must use the full square-root-operator forms (7) and (18). In another
remark, concerning applications of our scheme examined in Higgs fields, we pro-
pose that motion of Higgs particles and their interaction with other particles may
be given by the square-root Klein–Gordon-type equations (7), (18), or (67) with
potentials (57) and (58). Why Higgs particles do not show up experimentally may
have its reason in a random mass distribution

ρm(x) =
(

1

π

)
(m4− x2)−

1
2

with the density∫ m2

−m2
dxρm(x) = 1,

∫ m2

−m2
dx xρm(x) = 0,

∫ m2

−m2
dx x2ρm(x) = 1

2
m2.
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The energy of the Higgs particle is given by

E =
∫ 1

−1
dλ ρ(λ)

√
p2+m2λ2 = 2

π

√
m2+ p2E

(
π

2
,

m√
m2+ p2

)
,

whereE(π/2, x) in the integrand is the complete elliptic integral of the second
kind.

9. MATHEMATICAL TOOLS

9.1. Product of Nonlocal Field Operators and Green Functions

Equalities (17) and (24) allow us to get a more exact definition of nonlocal
field operator products, like

φ(x) · φ(y) =
∫ 1

−1

∫ 1

−1
dλ1 dλ2 ρ(λ1)ρ(λ2) Expec[σ (x, λ1)σ (y, λ2)],

where, by definition,

Expec[σ (x, λ1)σ (y, λ2)] = σ (x, λ1)σ (y, λ2)δ(λ1− λ2)/ρ(λ1). (86)

Thus

φ(x) · φ(y) =
∫ 1

−1
dλ ρ(λ)σ (x, λ)σ (y, λ). (87)

Definitions (86) and (87) imply thatσ (x, λ) is a random distribution, like a
Gaussian with the variableλ representing its width, whose expectation value or
covariance is given by (86). In analogy, the commutator of field operators is defined
as

[φ(x), φ(y)]− =
∫ 1

−1
dλ ρ(λ)[σ (x, λ), σ (y, λ)]−. (88)

Definitions (86), (87), and (88) can be generalized and used to form the product
of Green functions

Dc(x) · Dc(y) =
∫ 1

−1
dλ ρ(λ)1c(x, λ)1c(y, λ). (89)

The definition (89) also ensures gauge invariance (see Section 14 and Namsrai,
1998).

9.2. Field Theory on the Unit Circle

Matrix elements of theS matrix are defined as products
∏

i 6= j D(xi − xj ),
whereD(x) is the nonlocal propagators (26) or (28). For both scalar and spinor
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fields, nonlocal Green functions (28) can be defined in the complex plane on the
unit circle

Äc(x) = 1

2π i

∮
|z|=1

dz

z

(
ln z

2π i

)3

ρ

(
ln z

2π i

)[
Sc

(
ln z

2π i
x

)
− Sc

(
−x

ln z

2π i

)]
(90)

and

Dc(x) = 1

2π i

∮
|z|=1

dz

z

(
ln z

2π i

)
ρ

(
ln z

2π i

)[
1c

(
x

√
ln z

2π i

)
−1c

(
i x

√
ln z

2π i

)]
.

(91)

Equations (90) and (91) imply a representation of all physical quantities on the
unit circle, in bothx or p spaces. An analogous representation exists for Green
functions (26).

9.3. Boundary Conditions for The Schrödinger Equation

Let us study the solution of the one-dimensional Schr¨odinger equation (70)
(U = 0), which is given by (77) withe= 0:

ψf (x) = const√
2π

∫ ∞
−∞

dp eipx 1

− E
m +

√
1+ p2

m2

(92)

Integration of this expressions over the variablep encounters two polesp1,2=
±√E2−m2 = ±k. The choice of circumvention for these poles dictates by
boundary conditions. We distinguish four cases:

1. ψf (x) = 0 for x < 0
2. ψf (x) = 0 for x > 0
3. A particle moving to the left:ψf (x) ∼ e−ikx, x > 0
4. A particle moving to the right:ψf (x) ∼ eikx, x < 0.

Thus, the first and the second cases lead to the solutions

ψ1f(x) = −const · 2
√

2πmE
sinkx

k
θ (x) (93)

and

ψ2f(x) = const · 2
√

2πmE
sinkx

k
θ (−x). (94)

While from the last two cases we get

ψf (x) = −const ·
√

2π · imE[e−ikxθ (x)+ eikxθ (−x)]
1

k
. (95)

It seems that the appropriate boundary conditions at the positive or negative
semi axis have been written to ensure the Hamiltonian of the one-dimensional
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quantum system is a self-adjoint operator either on the positive or on the negative
semi axis, but not on the whole axis as in a usual quantum mechanical case.

10. GENERALIZED FUNCTIONS AND THE
KÄLLEN–LEHMANN REPRESENTATION

10.1. Basic Concept of Generalized Functions

Generalized functions enable to define as a density a material point or a point
charge. Here we give some basic definitions of test functions and generalized
functions or distributions. We shall explain their main differences in the cases of
local and nonlocal quantum field theories (for further reading see Bogolubovet al.,
1975; Dautray and Lions, 1985; Gel‘fand and Shilov, 1964/1968; Messian, 1961;
Namsrai, 1986; Schwartz, 1950, 1951; Vladimirov, 1979). To describe the concept
of generalized functions let us define the density generated by a material point
with the massm= 1 and a uniform distribution within a sphere of radiusε. The
centre is at the origin 0. The average densityρε(x) is

ρε(x) =
{

(4πε3/3) if |x| < ε;

0 if |x| > ε.

We are interested in the density distribution whenε→+0, which defines

δ(x) =
{
+∞ if x = 0

0 if x 6= 0
(96)

as limit of a sequence of densitiesρε(x) with

lim
ε→0

∫
d3x ρε(x) =

∫ +∞
−∞

d3x δ(x) = 1.

For a continuous functionf (x),

lim
ε→+0

∫
d3x ρε(x) f (x) = f (0). (97)

This formula denotes the weak limit of the sequence limε→0 ρε(x) as the functional
f (0), which is not the function itself. It assigns to each continuous functionf (x)
the functional valuef (0). This limiting process is abbreviated by the improper
functionδ(x) for which

∫
d3x δ(x) f (x) = f (0). In literature one finds other brief

notations like

(δ, f ) = f (0). (98)

We see thatδ(x) generates a point mass at the origin and∫
d3x δ(x) = (δ, 1)= 1.
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Before defining the functionals we consider the spaces of test functions. It is
said that continuous functions are the test functions for theδ functional. This
point of view takes as its basis of the definition of any generalized functions as
a linear continuous functional onto sets of sufficiently well-defined so-called test
functions. In general, test functions set up linear normalized spaceU , in which the
commutative and associative addition is defined as

1. u+ v = v + u
2. u+ (v + w) = (u+ v)+ w

And also

u+ 0= u, u+ (−u) = 0

for eachu, v, w ∈ U and 0∈ U . Moreover,

1 · u = u, λ(µu) = (λµ)u

and

(λ+ µ)u = λu+ µu, λ(u+ v) = λu+ λv

for anyu, v ∈ U and some (real and complex) numbersλ andµ. The real func-
tion p(u) = ‖u‖ defined onU is called the norm if the following conditions are
fulfilled:

(i) for any numberλ, p(λu) = |λ|p(u)
(ii) p(u+ v) ≤ p(u)+ p(v) (triangle inequality)

(iii) if p(u) = 0, thenu = 0.

From conditions (i) and (ii), it follows nonnegativity of the norm

0= p(u− u) ≤ p(u)+ p(−u) = 2p(u).

The functions satisfying only conditions (i) and (ii) are called the semi-norms. If the
norm p is given inU , then one can define the distance between any two elements
u andv ∈ U as p(u− v). We say that the sequence (u1, . . . , un, . . .) converges
to the limit u if the distance betweenun andu tends to zero whenn→∞, i.e.,
if lim n→∞ p(un − u) = 0. Convergence defined in such a manner is sometimes
called the convergence over the norm or the strong convergence.

Linear spaceU in which the convergence is given by the normp(u) is
called the normalized space. SpaceU is called countably normalized (with the
norms{pσ (u)}, p1(u) ≤ p2(u) ≤ . . . ≤ pσ (u) ≤ . . .) if the convergence is defined
as limν→∞ pσ (uν − u) = 0 for anyσ , andu ∈ U . For example, the Hilbert space
L2[a, b] of all complex functionsf (x) with norm

( f, f ) = ‖ f ‖2 =
∫ b

a
dx f∗(x) f (x)
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is linear normalized space. Other linear normalized space is the spaceC([a, b]) of
continuous functions on the interval [a, b] with the norm

p(u) = Supx∈[a,b] |u(x)|.
We consider the spaceC(σ, ρ , n) of complex functions ofn real variablesx =
x1, . . . , xn, having continuous partial derivatives up to the orderσ inclusively, and
decreasing faster than|x|−ρ together with all derivatives at infinity. In other words,
for the functionsu(x) from C(σ, ρ , n) all the products of the type

xαDβu(x), |α| ≤ ρ , |β| ≤ σ (99)

are bounded, where

xα = xα1
1 xα2

2 · · · xαn
n , |α| = α1+ · · · + αn, Dβ = ∂β1+···+βn

∂xβ1
1 · · · ∂xβn

n

. (100)

The norm in the spaceC(σ, ρ , n) is given by

pρσ (u) = max|α|≤ρ
|β|≤σ

Supx∈Rn |xαDβu(x)|. (101)

The spaces of the type ofC(σ, ρ , n) play an important role in the theory of distribu-
tions. In particular, the spaceS= S(Rn) = C(∞,∞,Rn) consists of all infinitely
smooth functions in then-dimensional real spaceRn, which decrease rapidly any
polynomials of (x2

1 + x2
2 + · · · + x2

n)−1/2 together with all partial derivatives at
‖x‖ → ∞. We define the convergence inSby the countable system norms

pσ (u) = pσσ (u) = max|α|≤σ
|β|≤σ

Supx∈Rn |xαDβu(x)|

where σ = 1, 2,. . . . In general, all functions of the typeP(x1, . . . , xn)×
exp[−x2

1/a
2
1 − · · · − x2

n/a
2
n] including Hermit–Chebyshev functions may be used

as functions ofS spaces, whereP(· · ·) is an arbitrary polynomial. Another space
D(G) of test functions consists of the set of infinitely smooth functions (i.e., func-
tions having continuous partial derivatives of all orders) inRn, tending to zero
outside of the regionG. For example, the functionu(x) defined by the equality

ua(x) =
{

exp[a2/(x2− a2)], for −a < x < a (a > 0);

0 for |x| ≥ a

belongs to the spaceD(a).

Definition. A numerical function defined in linear spaceU is called functional.
The functionalF(u) is called linear, if for anyu, v ∈ U , and for any numberα
andβ

F(αu+ βv) = αF(u)+ βF(v). (102)
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The functionalF(u) is continuous if the convergence of sequence{un} ∈ U to
u ∈ U follows the convergence of sequenceF(un) to F(u). If there exists a positive
numberCF such as that for anyu ∈ U , the inequality|F(u)| ≤ CF p(u) holds.
The set of all linear functionals in normalized spaceU is linear space, we call
it the space conjugate toU and denote it byU ′. In U ′ one can also define the
norm

p′(F) = Supp(u)≤1|F(u)|
We retain the term “generalized function” for the functionalsS′, while the

functionalsD′ are called the distributions, Schartz (1950/1951), and Gel‘fand and
Shilov (1964,1968) calls them generalized functions of “tempered growth.”

Definition. Functions disappearing outside some finite region of space are
called finite functions. Closure of point sets, on which a continuous function
u(x) 6= 0, is called the support of this function. Some properties of generalized
functions are

1. Transformation of Arguments and Differentiation
Mutually synonymous transformationy = ϕ(x) [y1 = ϕ1(x), . . .] or

x = ϕ−1(y) of the spaceRn onto itself leads to

( f (ϕ−1(y), u(y)) =
∫
Rn

dnx f ∗(x)u(ϕ(x))|J(ϕ)|

and (
∂ f

∂xk
, u

)
≡ −

(
f,
∂u

∂xk

)
(103)

for any distributionf . HereJ(ϕ) is the Jacobian of the transformation. We
consider some examples for the generalized functions of a single variable
that may be defined as the derivative of usual integrable functions.
1a. The derivative of the well-known discontinuous functionθ (x) equals

δ(x): (
dθ

dx
, u

)
= −

∫ ∞
−∞

dx θ (x)
du

dx
= −

∫ ∞
0

dx

(
du

dx

)
= u(0)= (δ, u). (104)

1b. The functional (d/dx) ln |x| coincides with the principal value of 1/x
in Cauchy’s sense:(

d ln |x|
dx

, u(x)

)
= P

∫ ∞
−∞

dx
u(x)

x
. (105)
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1c. We define the function 1/x2 as a derivative of the generalized function
−1/x:(

1

x2
, u(x)

)
=
(

1

x
, u′(x)

)
=
∫ ∞

0
dx

u′(x)− u′(−x)

x
. (106)

In general,

x−n = (−1)n−1

(n− 1)!

dn

dxn
ln |x|, n = 1, 2,. . . (107)

In accordance with (103), (107), and the property

ln(x + i 0) = lim
y→+0

ln(x + iy) = ln|x| + i lim
y→+0

arg(x + iy)

= ln|x| + iπθ (−x),

we have

1

x + i 0
≡ d

dx
ln(x + i 0)= 1

x
− iπδ(x), (108)

or in the general case

(x ± i 0)−n = (−1)n−1

(n− 1)!

dn

dxn
ln(x ± i 0)= x−n ± iπ

(−1)n

(n− 1)!
δn−1(x).

(109)

Using (103) and (109) one gets

(δn, u) = (−1)nu(n)(0), δn = dn

dxn
δ(x).

2. Fourier Transforms of Generalized Functions
Consider the spaceRn with the metric

s2 = gi j xi yj = x1y1+ · · · + xl yl − xl+1yl+1− · · · − xnyn (110)

and study the Fourier transform with respect to this bilinear form.

Definition. The Fourier transform of the generalized functionf (x) is
defined as the linear functional̃f (p) on the space of the Fourier images
of the test functionsu(x) by the formula

( f̃ (p), ũ(p)) = ( f (x), u(x)), (111)

whereũ(p) is given by

ũ(p) = Fu(x) = (2π )−
n
2

∫
Rn

dnx eipxu(x), (112)
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which is also the test functioñu(p) ∈ S. The inverse transformation of
(112) possesses the same properties asF , and therefore the Fourier trans-
form realizes an isomorphismSon S.

Theorem 1. The Fourier transform of the generalized functions defined
by the formula (111) is the isomorphism of space S′ onto itself. We recall
that the isomorphism of the linear topological spaceU1 onto the same
spaceU2 is called the mutually synonymous and mutually continuous
mapping ofU1 ontoU2, conserving linear operations.

We give here Fourier transformations of some generalized functions:
2a.

Fθ (t) = (2π )−
1
2

∫
dt θ (t)eiωt = i (2π )−

1
2

1

ω + i 0

2b.

Fδ(n)(x) = (2π )−
n
2

∫
Rn

dnx δ(n)(x)eipx = (2π )−
n
2

2c.

F̃

(
eipx

(2π )
n
2

)
= (2π )−n

∫
Rn

dn p eip(a−x) = δ(n)(x − a)

whereδ(n) = δ(x1) · · · δ(xn). ¤

3. Multiplication of the Generalized Function by a Smooth Function and
Their Convolution

The product of two generalized functions represents a difficult prob-
lem in the theory of the generalized functions since it is a nonlinear oper-
ation. For instance,

1

x
(xδ(x)) = 1

x
0= 0 6=

(
1

x
· x
)
δ(x) = δ(x).

Nevertheless, there exists a wide class of functions for which one can
define their products with the generalized functions fromS′ in a natural
manner. It is said that the functionϕ(x) is a multiplier in the spaceS of
test functions if fromu(x) ∈ S it follows thatϕ(x)u(x) ∈ S.

Definition. If ϕ(x) is the multiplier, the product ofϕ(x) by a generalized
function f ∈ S′ is given by

(ϕ(x) f, u(x)) = ( f, ϕ∗(x)u(x)) (113)

for anyu(x) ∈ S. By defintion, the product is commutative, i.e.,ϕ f = f ϕ.
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We now consider the operation of convolution that is widely used in
the theory of the generalized functions.

Definition. The convolution for two functionsf (p) andg(p) is given by

f (p) ∗ g(p) =
∫
Rn

dnq f (p− q)g(q) =
∫
Rn

dnq f (q)g(p− q).

(114)
Using the second equality in (114) the convolution of the generalized
function f with the test functionu(p) ∈ S is defined as

f ∗ u(p) = ( f (q), u(p− q)) =
∫
Rn

dnq f (q)u(p− q). (115)

4. Division and Support of a Generalized Function
The division is inverse in operation to multiplication and leads to the

study of the equation

ϕ(x) f = g, (116)

whereg ∈ S′ andϕ(x) are the given multiplier functions, andf is an
unknown generalized function. Whenϕ(x) 6= 0 for any x, Eq. (116) is
solved elementarily. If the functionϕ(x) has zeros, the problem of division
becomes complicated. Consider here only the case of a single independent
variablex and assume thatϕ(x) in (116) has a discrete set of zeros of finite
order. Thus,x f = g, solution of which has the form (f, u) = Cu(0)+
(g, u1(x)), whereu(x) andu1(x) ∈ S(R1). While the general solution of
the homogeneous equationx f0 = 0 is ( f0, u) = Cu(0), i.e., f0 = Cδ(x).
Further, by induction it is shown that the more general equationxm f = g
always has a solution with respect tof ∈ S′, whereg ∈ S′ andm is a
natural number. An arbitrary factor of this solution is produced by a general
solution of the homogeneous equationxm f0 = 0, that is,

f0 =
m−1∑
ν=0

Cν

ν!
δν(x), δν = dν

dxν
δ(x), (117)

whereCν are arbitrary constants. Furthermore, we discuss other questions
of interest, including the local properties of the generalized functions. As
opposed to the usual functions, which are given at each point of some
set, the generalized functions are determined as a whole as values of the
functional on the space of test functions. Generally speaking, they do
not have definite values at separate points of space. It is said that the
generalized functionsf andg coincide in the region (or in the open set)
G if for any test functionu(x) with the support onG the equality (f, u) =
(g, u) holds. Thus, by definition the set of points on which the generalized
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function f turns to zero is open. Complement of this set to the whole space
Rn is called the support of the generalized functionf .

Theorem 2. Let f be the generalized function located at the origin of
the coordinate system(i.e., f(x) = 0 for x 6= 0). Then f(x) is expressed
by a finite linear combination ofδ function and its derivativesδν(x). This
assertion is valid for both cases of generalized functions of many variables
and of the distributions from D′(Rn), i.e., f ∈ D′(Rn),

f (x) =
∑
|α|≤N

CαDαδ(x), (118)

where N is the order of f, Cα are some constants, and Dα is given by the
expression (100).

In scalar field theory, the causal Green function1c(x) and the Pauli–
Jordan function1(x) = [ϕ(x), ϕ(y)]− are generalized functions of the
typeδ(x) andδ(x)θ (x). The generalized form of (118),

F(x) =
∞∑

n=0

Cn(¤l 2)nδ(4)(x), (119)

is called a nonlocal generalized function, properties of which are depen-
dent on the sequence of Cn. Roughly speaking, in difference with (118),
the generalized functions (119) are located in some domain characterized
by the parameter l. The space of test functions for the generalized func-
tions (119) consists of the entire functions f(zn, . . . , zn) ∈ Zα, (α ≥ 1) of
n complex variables zi = xi + iyi , satisfying the conditions:
1. For any f(z1, . . . , zn) ∈ Zα, there exist such positive numbers C >0

and Aj > 0 ( j = i , . . . , n) that

| f (z1, . . . , zn)| ≤ exp

{ n∑
j=1

Aj |zj |α
}
.

2. For any y1, . . . , yn∫
d4x1 · · ·

∫
d4xn| f (x1+ iy1, . . . , xn + iyn)| < ∞.

On the spaceZα one can define all nonlocal generalized functions of the
type of (119) for which the Fourier transform̃F(p2) is an entire analytical
function in the complex p2 plane, with the order of growthρ < γ

2 = α
2(α−1).

The generalized functions (119) are considered in Efimov (1977) and
Namsrai (1986). ¤
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10.2. The Källen–Lehmann Representation

Spectral forms (8), (19), and (49) for the composed field8(x), described by
the square-root field equations, are similar to the K¨allen–Lehmann representation
for a complex scalar Heisenberg picture operator8(x), which may or not be an
elementary particle field. In their original works (K¨allen, 1952; Lehmann, 1954),
they considered the vacuum expectation value of a product

〈0|8(x)8∗(y)|0〉 =
∑

n

〈0|8(x)|n〉〈n|8∗(y)|0〉, (120)

where the sum runs over any complete set of states. Choosing these states as
eigenstates of the momentum four-vectorp̂µ, translational invariance gives

〈0|8(x)|n〉 = exp(i pn · x)〈0|8(0)|n〉
and (121)

〈n|8∗(y)|0〉 = exp(−i pn · y)〈n|8∗(0)|0〉.
Substituting (121) into (120) we can transform the sum into a spectral function

(for details, see Weinberg, 1995)∑
n

δ4(p− pn)|〈0|8(0)|n〉|2 = (2π )−3θ (p0)ρ(−p2), (122)

with ρ(−p2) = 0 for p2 > 0. With this definition, Eq. (120) reads as

〈0|8(x)8∗(y)|0〉 = (2π )−3
∫

d4 p
∫ ∞

0
dµ2 exp[i p · (x − y)]

× θ (p0)ρ(µ2)δ(p2+ µ2) (123)

or

〈0|8(x)8∗(y)|0〉 =
∫ ∞

0
dµ2 ρ(µ2)1+(x − y, µ2), (124)

where1+(x) is the familiar Pauli–Jordan function

1+(x − y, µ2) = (2π )−3
∫

d4 p θ (p0)δ(p2+ µ2) exp[i p · (x − y)]. (125)

In just the same way, one can get

〈0|8∗(y)8(x)|0〉 =
∫ ∞

0
dµ2 ρ̄(µ2)1+(y− x, µ2). (126)

The causality requirement tells us that the commutator [8(x),8∗(y)]− must
vanish for spacelike separationx − y. The vacuum expectation value of the
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commutator is

〈0|[8(x),8∗(y)]−|0〉 =
∫ ∞

0
dµ2(ρ(µ2)1+(x − y, µ2)− ρ̄(µ2)1+(y− x, µ2)).

(127)

Thus, it is necessary that

ρ(µ2) = ρ̄(µ2). (128)

Using Eq. (128), the vacuum expectation of the time-ordered product (or the causal
Green function) is

〈0|T{8(x)8∗(y)}|0〉 = −i
∫ ∞

0
dµ2 ρ(µ2)1c(x − y, µ2) (129)

where1c(x, µ2) is the Feynman propagator for a scalar particle of massµ. In
momentum space

D(p) ≡ i
∫

d4x exp[−i p · (x − y)]〈0|T{8(x)8∗(y)}|0〉

and therefore

D(p) =
∫ ∞

0
dµ2 ρ(µ2)

1

p2+ µ2− i ε
. (130)

One immediate consequence of this result and the positivity ofρ(µ2) is thatD(p)
cannot vanish for|p2| → ∞ faster than the propagator 1/(p2+m2− i ε). The
suggestion is made to include higher derivative terms in the Lagrangian, which
would make the propagator vanish faster than 1/p2 for |p2| → ∞, but the spec-
tral representation shows that this would necessarily entail a departure from the
positivity postulates of quantum mechanics.

A sum rule for the spectral function can be obtained if we use equal-time
commutation relations. If8(x) is a conventionally normalized canonical field
operator, then [

∂8(x, t)

∂t
,8∗(y, t)

]
−
= −i δ3(x− y). (131)

We know that

∂

∂x0
1+(x − y) |x0=y0 = −i δ3(x− y). (132)

So the spectral representation (127) and the commutation relations (131) together
tell us that ∫ ∞

0
ρ(µ2) dµ2 = 1. (133)
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This implies that for|p2| → ∞, the momentum space propagator (130) of the
unrenormalized fields has the free-field asymptotic behavior

D(p)→ 1

p2
.

This assertion is valid for the fields described by the square-root differential oper-
ator considered above.

11. VACUUM FLUCTUATIONS

In this section, corrections to the Newton and Coulomb potentials due to vac-
uum fluctuations are discussed. We show that very weak Yukawa-type potentials
are present in addition to the 1/r potentials whose strengths yield repulsion with
ranges inversely proportional to some mass of particles that cause the vacuum
fluctuations.

Recently, several theoretical proposals have been put forward in which a
treatment of the hierarchy problem in the gravity sector was changed from the
extremely small Planck scale to a TeV scale (Antoniadiset al., 1998a,b). Con-
jectures of the cosmology and phenomenology of this model are already known
(Kim, 2000). Randall and Sundrum (1999a,b) proposed different models in which
the background metric is curved along the extra dimension due to the negative bulk
cosmological constant. One of the consequences of these approaches is that the
Newton potential (law) is changed as a function of the numbers of extra dimen-
sions. In general, deviations for the 1/r Newton potential, for a unit test mass are
parameterized by two parameters (Kehagias and Sfetsos, 2000; Longet al., 1999)

V(r ) = −GM

r

(
1+ αe−

r
λ

)
, (134)

whereG is the usual Newton gravitational constant. Such potential corrections
are short-ranged, thusr À λ with values forλ conjectured as large as∼1 mm.
The value ofα depends strongly on the particular model. With a supersymmetry-
breaking mechanism anα of ∼0.6 is found (Antoniadiset al., 1998a,b), whereas
a dilaton model predicts anα of ∼45 (Antoniadiset al., 1998a,b, Taylor and
Veneziano, 1998). Other authors (Kehagias and Sfetsos, 2000) studied alterna-
tive models of compactification mechanism for internal dimensions in the lowest
Kaluza–Klein state, withα equal to its degeneracy. This gives for ann-dimensional
torusα = 4, 6,· · · , 14 whenn = 2, 3,. . . , 7.

In this section, we show that vacuum fluctuation effects can lead to similar
changes of Newton’s gravitational potential on equal footing corrections for the
Coulomb potential. Vacuum fluctuations are a result of the quantum-mechanical
mechanism of interacting massive particles with the vacuum. They imply that the
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particle at times gains or loses part of its total energy

Ep→ Ep± Ef for the propagator
1

m2+ p2
→ 1

m2+ p2± µ2
. (135)

To maintain energy the fluctuations cancel in time, thus

Ep+ Ef − Ef = Ep or
1

m2+ p2+ µ2− µ2
= 1

m2+ p2
. (136)

However, a gain or loss of energy is possibly fractionated, like

Ep =
√

Ep ·
√

Ep =
√

Ep+ E1
f − E1

f ·
√

Ep+ E2
f − E2

f (137)

or

1

m2+ p2
= 1√

m2+ p2

1√
m2+ p2

= 1√
m2+ p2+ µ2

1− µ2
1

1√
m2+ p2+ µ2

2− µ2
2

. (138)

Ei
f (µi ) are portions of vacuum energy expressed in terms of masses. Next, we

show that these zero–zero effects yield changes of the Newton and Coulomb laws
at short distances. In the language of the graviton (photon) propagator, the Newton
(and the Coulomb) potential is given by, in static limit,

VN(r ) = −MGN

(2π )3

∫
d3 p e−i pr 1

p2
= −GNM

4πr
(139)

and

VC(r ) = ± e

(2π )3

∫
d3 p e−i pr 1

p2
= ± e

4πr
, (140)

whereGN/4π = G. For definiteness, we consider the Newton potential case. Omit-
ting the tensor structure the graviton propagator can be decomposed

1

p2− i ε
=
[

1

m2+ p2− i ε

]
+
[

1

p2− i ε
− 1

m2+ p2− i ε

]
(141)

Gravitational effects in TeV’s energy region are correspondingly a sum of two
terms, ahigh-energyand alow-energyterm. The high-energy term is calculated
by using the first term in the graviton propagator (141) in Feynman diagrams for
gravitational processes. The low-energy term is calculated using the second term
in Eq. (141). This procedure of separating the propagator into two terms (141)
is in analogy with QED, where bound states are studied in external fields using
relativistic calculations (Weinberg, 1995). One advantage of this procedure is that
we shall also be able to calculate deviations from the 1/r Newton potentional due to
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quantum-gravitational vacuum fluctuations in very–high-energy domain. In terms
of (141) the Newton potential can be rewritten in the form of a sum of two terms

VN(r ) = −GN · M
(2π )3

∫
d3 p e−i pr

{[
1

p2
− 1

p2+m2

]
+
[

1

p2+m2

]}
. (142)

To take into account gravitational vacuum fluctuational effects due to the presence
of massive elementary particles in high energy processes we can write the high
energy term in Eq. (141) in the following formal form

1

p2+m2− i ε
= 1

m2+ p2− µ2+ µ2− i ε
= 1

p2+ µ2− i ε

[
1

1+ δ
µ2+ p2− i ε

]
,

(143)

whereδ = m2− µ2 and we have used the identity (136). Furthermore, we as-
sume that the mass shift in (143) is small and obtain the series in the parameterδ.
Deviation from the Newton potential is given by Eqs. (142), (143), and (136)

V (1)
N (r ) = −MGN

4πr

{
1− e−mr + e−µr

[
1− δ

2

r

µ
+ δ

2

8

r

µ3
(1+ µr )

− 1

48
δ3 r

µ5
(3+ 3µr + µ2r 2)+ · · ·

]}
. (144)

Assumingµ = m− ε, whereε is a small parameter of the theory, one can calculate
the series in the brackets of Eq. (144) up to any desired order ofε2. It turns out that all
terms proportional to any order of the parameterδ are mutually cancelled. We verify
this identity up toO(ε5) orders. It means that the momentary aspect of gain and loss
of energy from vacuum by a particle given by the expression (136) does not work.

Let us now consider two particle correlation-like potentials defined by the
formula (138) in graviton-induced propagation processes. In this case, one can
write Eq. (143) in the form

1

p2+m2− i ε
=
[

1

p2+m2− i ε

] 1
2
[

1

p2+m2− i ε

] 1
2

= 1√
µ2

1+ p2− i ε

1√
µ2

2+ p2− i ε

×
[
1− 1

2

δ1

µ2
1+ p2− i ε

+ 3

8

δ2
1[

µ2
1+ p2− i ε

]2 − · · · ]

×
[
1− 1

2

δ2

µ2
2+ p2− i ε

+ 3

8

δ2
2[

µ2
2+ p2− i ε

]2 − · · · ] (145)
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whereδ1 = m2− µ2
1 andδ2 = m2− µ2

2. Thus, the expression (144) takes the form

V (2)
N (r ) = −MGN

4πr

{
1− e−mr + 1

π

∫ 1

0
dα α−1/2(1− α)−1/2e−ρr

×
[
1− 1

2

r

ρ
(αδ1+ (1− α)δ2)+ 1

8

r

ρ3
(1+ ρr )

[
α2δ2

1 + (1− α)2δ2
2

+ 2α(1− α)δ1δ2
]− 1

16

r

ρ5
(3+ 3ρr + r 2ρ2)

[
δ1δ

2
2α(1− α)2

+ δ2
1δ2α

2(1− α)+ 1

3

(
δ3

1α
3+ δ3

2(1− α)3
)]]}

(146)

whereρ =
√
µ2

2+ α(µ2
1− µ2

2).
After some calculations, assumingε = µ2

1− µ2
2 is small, one gets

V (2)
N (r ) = −MG

r

{
1− 7

217

ε4

m8
e−mr[m4r 4+ 6m3r 3+ 15m2r 2+ 15mr]

}
,

(147)

wherem=
√

(µ2
1+ µ2

2)/2.
We see that multistage or correlated aspect of gain and loss of energy from

vacuum to vacuum by the particle gives rise to the change in the Newton potential,
where the sign of correction due to vacuum fluctuation is negative with respect
to extra-dimensional contributions in (134). It should be noted that unobservable
parametersµ2

i in Eq. (147) must be excluded from our consideration by using
integration or summation, depending on whether continuum or discrete spectrum
of energy was gained from vacuum by the particle. Thus, for the continuum spectra
of energy, the averaged functionε4 in (147) per massm takes the form

F(ε) = 〈ε4〉µ2 =
24

m

∫ m

0
dµ2

(
1− µ2

2

m2

)4

·m8

(148)

= 24m8 ·
∫ 1

0
dx(1− x2)4 = m8 · 211

9 · 7 · 5,

where we have assumed that mass valuesµi for one-stage-gain energy must belong
to the interval 0≤ µi ≤ m (i = 1, 2) and by definitionµ2

1− µ2
2 = 2(m2− µ2

2).
Experimental measurable quantity for the Newton potential (147) acquires the form〈

V (2)
N (r )

〉 = −MG

r

{
1− 1

45
· 1

26
· e−mr[m4r 4+ 6m3r 3+ 15m2r 2+ 15mr]

}
.

(149)

We now discuss another possibility for the taking away (or extract) of zero–zero
effect from vacuum: the square-root form of gain or loss of vacuum energy in (137),
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because this effect leads to nonlinear processes. Indeed, from previous sections we
know that the square-root Klein–Gordon equation (7) and its Green function equa-
tion (5) have the solutions (15) and (8) [or (13)] with the distribution (9) obeying
properties (10). For the square-root propagator (8) expression (142) reads

VN(r ) = −GNM

(2π )3

∫
d3 p e−i pr

[(
1

p2
− 1

m
√

m2+ p2

)
+
(

1

m
√

m2+ p2

)]
.

(150)

Now making use of the formula (137) and decomposing square-root propagator
by a rule like (143) and (145) one gets

V (3)
N (r ) = −MGN

4πr

{
1− 2

π
K1(mr)+ µ

π

2

m

[
K1(µr )− δ

2

(
r

µ

)
K0(µr )

+ 1

8
δ2

(
r

µ

)2

K1(µr )− 1

48
δ3

(
r

µ

)3

K2(µr )+ · · ·
]}

, (151)

where (δ = m2− µ2) and

V (4)
N (r ) = −MGN

4rπ

{
1− 2

π
K1(mr)+ 2

m

√
π

π02(1/4)

∫ 1

0
dα α−

3
4 (1− α)−

3
4 · ρ

×
[

K1(ρr )− 1

2

r

ρ
K0(ρr )[αδ1+ (1− α)δ2] + 1

8

(
r

ρ

)2

K1(ρr )

× (α2δ2
1 + (1− α)2δ2

2 + 2α(1− α)δ1δ2
)− 1

16

(
r

ρ

)3

K2(ρr )

×
[
δ1δ

2
2α(1− α)2+ δ2δ

2
1α

2(1− α)+ 1

3

(
α3δ3

1 + δ3
2(1− α)3

)+ · · · ]]}
(152)

instead of (144) and (146), respectively. Hereδ1 = m2− µ2
1 andδ2 = m2− µ2

2.
After some elementary calculations we have

V (3)
N (r ) = −GN

r

{
1−

√
2

πmr
e−mr

[
ε1

2m
+ ε2

1

2m

(
r + 1

4m

)(
1+ ε1

2m

)]}
(153)

and

V (4)
N (r ) = −GN

r

{
1−

√
2

πmr
e−mr

(
ε2

2

48m3

(
r + 3

4m

))}
, (154)

wherem− µ = ε1 and ε2 = µ2
1− µ2

2 as before. Making use of the following



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP233-343695 September 11, 2001 9:11 Style file version Nov. 19th, 1999

Square-Root Operator Quantization and Nonlocality 1965

averaged functions

F1(ε1) = 〈ε1〉µ = 1

m

∫ m

0
dµ(m− µ) = 1

2
m,

F2(ε1) = 〈ε2
1

〉
µ
= 1

m

∫ m

0
dµ(m− µ)2 = 1

3
m2,

F3(ε1) = 〈ε3
1

〉
µ
= 1

m

∫ m

0
dµ(m− µ)3 = 1

4
m3,

and

F4(ε) = 22

m

∫ m

0
dµ2

(
1− µ2

2

m2

)2

·m4 = 25

5 · 3m4,

one gets

〈
V (3)

N (r )
〉 = −GN

r

{
1−

√
2

πmr
e−mr · 1

48

(
59

4
+ 11mr

)}
(155)

and 〈
V (4)

N (r )
〉 = −GN

r

{
1−

√
2

πmr
e−mr · 1

90
(4mr + 3)

}
. (156)

We now consider other ways to take into account gravitational vacuum fluc-
tuational effects due to self-interaction of massive elementary particles in high-
energy processes, induced by the graviton propagation. Without loss of generality
we choose the interaction Lagrangian

Lin(x) = λ

3!
: ϕ3(x) : (157)

Then one-loop vacuum fluctuation is given by

F = (−i )2

2!
〈0|T

{∫ ∫
d4x d4y : Lin(x) :: Lin(y) :

}
|0〉

(158)
= −λ2

∫
d4y d4x D3

c(x − y) = −V · λ2
∫

d4x D3
c(x),

whereDc(x) is the causal Green function of a scalar particle,V is the volume of
four-dimensional space. At infinite volume limit it takes the form

F = −(2π )4λ2δ(4)(0)D̃
3
c(0). (159)

Here D̃c(p) is the Fourier transform ofDc(x). We would like to study vacuum
fluctuation induced by the self-interaction in the finite volume limit. By definition
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vacuum fluctuation, in this case, is given by

Ff = −λ2
∫

d4x D3
c(x) = λ2 lim

V→∞

∫
d4 p GV (p)D̃

3
c(p), (160)

whereGV (p) is a smeared-out delta function

lim
V→∞

GV (p) = δ(4)(p).

Let us consider the simple regularization function

GV (p) = 2N2

π2

1

[ p2+ N2]3
, (161)

whereN2 = 1/
√

V . This smooth function obeys the Diracδ-function properties

lim
V→∞

∫
d4 p GV (p) = 1

and

lim
V→∞

∫
d4 p GV (p) f (p) = f (0)

for some regular functionf (p) at the origin. To calculate the deviation of
Newton potential by the formula (142) due to vacuum fluctuation induced by
self-interaction of particles, one can rewrite the second term in (142) in the form

1

m2+ p2− i ε
⇒ 1

m2+ p2− i ε
− 3λ2

[ p2+ N2− i ε]3

1

[ p2+m2− i ε]3
, (162)

where3 = 2m6N2/π2, by using expressions (160) and (161). Contribution to the
Newton potential due to the last term in (162) is given by

Vf (r ) = M · GN

(2π )3

∫
d3 p ei pr

[
3λ2

[p2+ N2]3
· 1

[p2+m2]3

]

= MGN

4πr

{
3λ2

2
√

2N9
r
∫ √ 3

2

√
1
2

dβ · β−8

(
β2− 1

2

)2(3

2
− β2

)2

e−
Nrβ√

2

×
[
105+ 105N√

2
rβ + 45

2
N2r 2β2+ 10

2
√

2
N3r 3β3+ 1

4
N4r 4β4

]}
.(163)

After some calculations we have

Vf (r ) = −M · GN

4πr

{
−243λ2 r 2

N8
e−

Nr
2

}
. (164)
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Thus, expression (142) reads

V (5)
N (r ) = −MG

r

{
1− 243λ2 r 2

N8
e−

Nr
2

}
. (165)

We again obtain repulsion corrections to the Newton potential.
It is worth notice that vacuum fluctuation phenomena due to quantum gravita-

tional interactions are very complicated nonlinear processes, like neutron-induced
chain reactions in atomic nuclear and ultra–high-energy cosmic-rays-induced
avalanche-type processes in the earth’s atmosphere. From the physical point of
view the repulsion character of the potential contributions (149), (155), (156), and
(165) due to vacuum fluctuations is of interest in the avoidance (removal) of naked
singularities in quantum gravity where all matter do not attach at a single point
because of the repulsion potential at short distances, which gives rise to a negative
pressure of vacuum. It seems that repulsion additional contribution to the Newton
potential due to vacuum fluctuations does not depend on a concrete choice of the
form of regularized functions (161). Let us write another form of the function (161)

f (2)
d (p) = 6N4

π2
[ p2+ N2]−4 (166)

satisfyingδ-function properties forN → 0. For this smooth function, expression
(165) acquires the form

V (6)
N (r ) = −MG

r

{
1− 269

29
3(2)λ2 · r 4

N8
e−

Nr
2

}
, (167)

where3(2) = 6m6 · N4/π2. We obtain again regular, negative correction to the
Newton potential. The aforementioned circumstance distinguishes potential con-
tributions (149), (155), (156), (165), and (167) from the potential (134) obtained
using extra-dimensional methods, where extra-dimensional contributions to the
Newton potential are positive. Typical Compton length of elementary particles
is the proton oneλ = h/mpc ∼ 10−14 cm, and therefore all obtained corrections
(149), (155), and (156) may give measurable effects only in subnuclear distances,
while contributions (165) and (167) are divergent as∼V2 at the limit V →∞.
This fact tells us that corrections due to vacuum fluctuations are not correlated
with respect to extra-dimensional contributions like (134) at least forn ≤ 5.

12. EXTRA-DIMENSIONAL METHOD IN THE POTENTIAL THEORY

High-dimensional method entered in the nuclear and particle theories from
the early stages of development, when Kaluza (1921) and Klein (1926) attempted
to unify Einstein’s theory of gravitation with Maxwell’s electromagnetism by in-
troducing one additional extra-fifth-dimension of space and its compactification
with respect to the usual four-dimensional space–time. Recently, this approach
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has received much attention in connection with the developments in string theory
and in the solution of the hierarchy problem in high-energy physics. In this sec-
tion, we use this method to study potentials created by different extended objects
like a charged ring, disk, etc. Before calculating potentials of extended charges
we present some mathematical tricks. The volume ofn-dimensional momentum
space is given by

dn p = pn−1dp dÄn, dÄn = sinn−2 θn−1dθn−1 sinn−3 θn−2dθn−2 · · ·dθ1,
(168)

with 0≤ θi ≤ π , except 0≤ θ1 ≤ 2π . Using the integral formula∫ π

0
dθ sinm θ = √π 0

(
1
2(m+ 1)

)
0
(

1
2(m+ 2)

) ,

one gets

Än =
∫

dÄn = 2
π

n
2

0
(

n
2

) . (169)

Let us consider the propagator of the scalar particle

Dµ(p) = 1

[m2+ p2− i ε]1+µ .

In the static limit it leads to

Dµ(p) = 1

[m2+ p2]1+µ , (170)

wherep2 = p2
1 + · · · + p2

n andµ is some parameter of the theory; in particular,
µ = 0 corresponds to the usual Klein–Gordon propagator, while the square-root
propagator is the caseµ = −1/2. Assumingm= 0 one can obtain photon and
graviton propagators in the static limit. Generalizedn-dimensional Yukawa-type
potential is given by

Un(r ) = 1

(2π )n

∫
dn p

e−i pr

[m2+ p2]1+µ

= Än−1

(2π )n

∫ ∞
0

dp pn−1 ·
∫ π

0
dθn−1 sinn−2 θn−1 e−i pr cosθn−1. (171)

Furthermore, using the integrals (Gradshteyn and Ryzhik, 1980)∫ π

0
dθn−1 sinn−2θn−1 e−i pr cosθn−1 = 2

n−2
2 0

(
n− 2

2 + 1
2

)
0
(

1
2

)
(pr )

n−2
2

J n−2
2

(pr )
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and ∫ ∞
0

dp p
n
2

J n−2
2

(pr )

[m2+ p2]1+µ = 3(mr) ≡ m
n−2

2 −µr µ

2µ0(1+ µ)
K n−2

2 −µ(mr), (172)

one gets

Un(r ) = Än−1

(2π )n

2
n−2

2 0
(

n
2 − 1

2

)
0
(

1
2

)
r

n−2
2

3(mr), (173)

where3(mr) is given by Eq. (172) and

Än−1 = 2π
1
2 (n−1)

0
(

1
2(n− 1)

) .
Inequality

−1 <
n− 2

2
< 2µ+ 3

2
(174)

is necessary to converge integrals in (172) and (173). Thus, we see that the Klein–
Gordon caseµ = 0 is sufficient forn = 3, 4 spatial spaces. Beginning fromn = 5
(space–time is six-dimensional) Klein–Gordon propagator does not work.

Finally, we obtain then-dimensional potential corresponding to the propaga-
tor (170) in the form

Un(r ) = 1

(2π )
n
2

1

r
n−2

2

m
n−2

2 −µ

2µ0(1+ µ)
r µK n−2

2 −µ(mr), (175)

whereKn(x) is the MacDonald function. Let us consider the following cases:

1. n = 3, i.e., space–time dimension is 4 andµ = 0. Since

K 1
2
(z) =

√
π

2z
e−z;

therefore

UY
3 (r ) = 1

4πr3
e−mr3 (176)

is just the Yakawa potential, wherer3 =
√

x2+ y2+ z2 = r .
2. n = 4, i.e., space–time dimension is 5 andµ = 0. In this case, we have

UY
4 (r ) = m

4π2r4
K1(mr4) (177)

Herer4 =
√

r 2+ x2
4.

3. n = 3 andµ = −1/2. This is the square-root propagator case, which gives

USR
3 (r ) = m

2π2r3
K1(mr3) (178)
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4. For the casesn = 5 andn = 6, the potentials acquire the forms

U5(r5) = r
µ− 3

2
5 m

3
2−µ

(2π )
5
2 2µ0(1+ µ)

K 3
2−µ(mr5) (179)

and

U6(r6) = m2−µr µ−2
6

(2π )32µ0(1+ µ)
K2−µ(mr6) (180)

respectively. Herer5 =
√

r 2+ x2
4 + x2

5 andr6 =
√

r 2
5 + x2

6. We see that
there are more singular potentials compared to the three-dimensional case.

The generalized form of the Coulomb potential is given by the limitm→ 0.
For example,

UC
3 (r ) = 1

4πr
, UC(SR)

3 (r ) = 1

2π2r 2
, UC

4 (r ) = 1

4π2r 2
4

, (181)

and so on. We observe the following rule:

UY
3 (r ) =

∫ ∞
−∞

dλ U4
(
m
√

r 2+ λ2
) = 1

4πr
e−mr

and

UC
3 (r ) =

∫ ∞
−∞

dλ UC
4 (λ) = 1

4πr
. (182)

Here we have used the integral∫ ∞
0

dλ√
r 2+ λ2

K1
(
m
√

r 2+ λ2
) = 0

(
1
2

)
√

2mr
K 1

2
(mr).

Analogously, two or three steps of lowering dimensions of space give more smooth
potentials. For instance,

U f
3 =

∫
dλ1

∫
dλ2 U5

(
m
√

r 2+ λ2
1+ λ2

2

)
= m

1
2−µ

(2π )
3
2 2µ0(1+ µ)r

1
2−µ

K 1
2−µ(mr)

and

UF
3 (r ) =

∫
dλ1

∫
dλ2

∫
dλ3 U6

(
m
√

r 2+ λ2
)

= 2
√

2m
1
2−µ0

(
3
2

)
(2π )20(1+ µ)2µr

1
2−µ

K 1
2−µ(mr). (183)

We see that these two ways of lowering dimensions by means of integration over
infinite domains coincide with each other.
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Now let us consider the compactification of space dimension into finite re-
gions. Here we present different cases:

1. Let x and y be located in a disk with radiusR. Then after reduction
(compactification) of space dimension on this disk, we obtain its electric
static potential on the symmetric axis, i.e.,z axis by assumingm= 0:

UC
d (z) = 1

πR2

∫ 2π

0
dϕ
∫ R

0
dλ · λ e

4π
√

z2+ λ2

= e

2πR2

[√
R2+ z2− z

]
, (184)

wheree/πR2 is the density of charge.
2. Analogously, the potential of a charged stick with length 2R located along

thez axis is given by

UC
s (r2) = 1

2R

∫ R

−R
dλ

e

4π
√

r 2
2 + λ2

= e

8πR
ln

1+
√

1+ r 2
2

R2√
1+ r 2

2
R2 − 1

, (185)

wherer2 =
√

x2+ y2.
3. Finally, we can write the potential generated by a charged ring with radius

R, located on the (z= 0)-plane. The result reads

UC
r (z) = 1

2πR

∫ 2π

0
dϕ

Re

4π
√

R2+ z2
= e

4π
√

R2+ z2
. (186)

We see that reduction of the space dimension is useful in getting potentials of
different expended charges. These formal procedures can be applied to some
other type of potential theory, for example, the two-dimensional reduction of the
Yakawa potentialUY(r ) = (g/4πr ) exp (−mr), whereg is some coupling con-
stant, given by

UY
1 (x) = 1

πR2

∫ 2π

0
dϕ
∫ R

0
dλ · λ g

4π
√

x2+ λ2
e−m

√
x2+λ2

= g

2mπR2

[
e−mx− e−m

√
x2+R2]

. (187)

This formal potential form is finite at the originx = 0. It should be noted that
confinement-type potentials are also obtained by using compactification method
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for extra-dimensional formalism. One example is

UC
3 (r ) = 1

πR2

∫
dλ1

∫
dλ2 U5

(
m
√

r 2+ λ2
1+ λ2

2

)

= 1

(2π )
5
2

2
1
2−2µ

0(1+ µ)
(
µ− 1

2

)
R2

[
(r 2+ R2)µ−

1
2 − (r 2)µ−

1
2
]
. (188)

ParametersR andµ are defined by the experimental data on QCD measurements.

13. ELECTROMAGNETIC INTERACTIONS
OF EXTENDED CHARGES

In this section, we study electromagnetic interactions of the charged ring
and dipole. Simple quantum electrodynamical calculation gives restriction`1 ≤
10−19 cm on the radius of the ring. Let us consider two typical extended objects:
a ring charge (closed string) and a dipole (rigid string). In accordance with the
previous section, potentials are given by

ϕ`r (r ) = e

4πε0
· 1√

`2
1+ r 2 cos2 θ

(189)

and

ϕ`d(r ) ∼ ed cosθ

4πε0
(
r 2+ `2

2

) (
`2 = d

2

)
. (190)

An explicit form of the latter is

ϕ`d(r ) = e

4πε0
·
√

r 2+ `2
2+ rd cosθ −

√
r 2+ `2

2− rd cosθ√(
r 2+ `2

2

)2+ r 2d2 cos2 θ
, (191)

wherè 1 andd are the radius of the ring charge and a length of the dipole consisting
of two opposite electric charges. An angleθ characterizes orientation of the ring
and the dipole in space. The orientation is not important in our scheme. We assume
that the ring (or the dipole) is not made of plastic or some other insulator, so that
the charge and the dipole can be regarded as unfixed in place, i.e., orientationθ

of the plane of the ring (or the dipole) along its central axis is a random number
belonging to the interval−1/2π ≤ θ ≤ 1/2π with a probability distributionw(θ )∫ π/2

−π/2
dθ w(θ ) = 1,

∫ π/2

−π/2
dθ · θw(θ ) = 0,

∫ π/2

−π/2
dθ · θ2w(θ ) = const.

(192)
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Thus, averaged potentials for a simple formw(θ ) = 1
2cosθ read

U `
r (r ) = 〈ϕ`r (r )

〉
θ
= e

2π2

1

r
arcsin

r√
`2

1+ r 2
(193)

and

U `
d(r ) = 〈ϕ`d(r )

〉
θ
= ed

16

1

r 2+ `2
2

, (194)

where we have assumedε0 = 1. Formulas (193) and (194) are classical roots of
the theory. Poisson equations for (193) and (194) take the form

1U `
i (r ) = −eρ`i (r ), i = r, d, (195)

where

ρ`r (r ) = `1

π2

(
r 2+ `2

1

)−2
(196)

and

ρ`d(r ) = d

16

{
6(

r 2+ `2
2

)2 − 8r 2(
r 2+ `2

2

)3} (197)

satisfying the conditions:∫
d3r ρ`r (r ) = 1 and

∫
d3r ρ`d(r ) = 0 (198)

as should be. Solutions of (195) have the standard integral forms

U `
i (r ) = e

4π

∫
d3r ′

ρ`i (r − r ′)
|r ′| , (i = r, d). (199)

The formal four-dimensional Euclidean extension of formulas (195)–(199) is use-
ful for studying the relativistic covariant theory of extended fields. In this case,
Eqs. (195) lead to the same form

¤EU `
i E(xE) = −eρ`i E(xE), (200)

with

ρ`rE(xE,`1) = 3`1

4π2

(
r 2

E + `2
1

) −5
2 (201)

and

ρ`dE(xE) = 3L

16π

{
4(

r 2
E + `2

2

) 5
2

− 5r 2
E(

r 2
E + `2

2

) 7
2

}
,

(
L = πd

2

)
(202)
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obeying the normalization conditions∫
d4xEρ

`
rE (xE) = 1 and

∫
d4xEρ

`
dE (xE) = 0. (203)

HerexE = (x, x4), r 2
E = r2+ r 2

4, ¤E = ∂2/∂xE
i · ∂xE

i . In this case, solutions (199)
acquire the form

U `
i E(xE) = e

4π2

∫
d4yE

ρ`i E(xE− yE)

y2
E

, (i = r, d). (204)

The nonlocal photon propagator corresponding to the potential (193) in the
static limit takes the form, for the Euclidean metric,

D̃
`

rE

(
p2

E

) = 1

e

∫
d4yE exp [−i pEyE]U `

rE(yE) = 1

p2
E

exp

[
−`1

√
p2

E

]
(205)

or for the pseudo-Euclideanx space

D`
r (x) = 1

(2π )4

1

i

∫
d4 p exp(−i px)D̃

`

rP(p2),
(
p2

E = p2+ p2
4

)
(206)

in accordance with the general corresponding rule where same relations exist
between propagators of the photons (massive scalar particles) and the Coulomb
(Yukawa) potential.

Having the basic formulas (205) and (206) in the Pseudo-Euclidean metric we
can easily study nonlocal quantum field theory of the ring in accordance with the
Efimov method (Efimov, 1977, 1985; Namsrai, 1986). Let us consider the nonlocal
interaction of the ring charge theory. The interaction Lagrangian has the form

L`in(x) = 1

2
e
∫

d4y1

∫
d4y2 K`(y1)K`(y2) ψ̄(x − y1− y2)

× γµ · ψ(x − y1− y2)
[
A0
µ(x − y1)+ A0

µ(x − y2)
]

(207)

or the differential form

L`in(x) = e · ψ̄(x)γµψ(x)A`µ(x). (208)

The latter means that only the photon carries nonlocality in the ring theory. Here
K`(x) is the nonlocal distribution given by

K`(x) = K`(¤`2)δ(4)(x) (209)

and

K`(¤`2) = exp

[
−1

2
`1
√−¤

]
, (210)
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and

A`µ(x) =
∫

d4y · K`(x − y)A0
µ(y) (211)

is the nonlocal photon field due to the ring charge, with the propagator

D`
µν(x − y) = 〈0|T[A`µ(x)A`ν(y)

]|0〉
=
∫

d4y1

∫
d4y2 · K`(x − y1)K`(y− y2)

×〈0|T{A0
µ(y1)A0

ν(y2)
}|0〉

= −gµν
(2π )4i

∫
d4k

[ K̃`(k2`2)]2

−k2− i ε
e−ik(x−y), (212)

where [K̃`(k2`2)] = exp[− 1
2`1

√−k2 ] in accordance with (205), andA0
µ(x) is the

local photon field. The nonlocal distributionK`(x) in (211) coincides with the
charge density (201)

K`(x) = ρ`r
(

x,
`1

2

)
= 3`1

8π2

(
`2

1

4
− x2

) −5
2

,
(
x2 = x2

0 − x2
)

(213)

in sense of the generalized function. It is obvious that function (213) satisfies
δ-function properties at the limit̀1→ 0.

From expressions (209)–(211) we can see that we arrive at the square-root
differential operator of the type

√−¤. This is the typical mathematical structure
of a square-root theory, the definition of which is given in the previous sections.
The form (208) of the interaction Lagrangian grants the gauge invariance of the
ring theory with respect to the nonlocal gauge group

A0
µ(x)⇒ A0

µ(x)+ ∂µ f (x),

ψ(x)⇒ ψ(x) exp

[
−ie

∫
d4y · K`(x − y) f (y)

]
,

ψ̄(x)⇒ ψ̄(x) exp

[
ie
∫

d4y · K`(x − y) f (y)

]
.

By knowing (208) theSmatrix can be written in the form of theT products

S= lim
3→∞,δ→0

T δ
3 exp

{
ie
∫

d4x ψ̄(x)Â
`
(x)ψ(x)

}
, (214)

where the symbolT δ
3 means the so-called WickT production orT∗ operation

used in the local theory, and the upper and lower case3 andδ correspond to some
intermediate regularization procedures defined in Efimov (1977), which make the
theory finite in all the matrix elements of theS matrix. The limits3→∞ and
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δ→ 0 mean a removal of regularizations. To study the perturbation series for the
S matrix (214) by prescription of the usual local theory, it is necessary to change
the photon propagator (in the Feynman diagrams)

1µν(x − y)→ D`
µν(x − y) = −gµνD`(x − y)

in accordance with (212) and to keep the usual local fermion propagator

S(x − y) = 〈0|T [ψ(x)ψ̄(y)]|0〉 = 1

(2π )4i

∫
d4 p · 1

m− p̂− i ε
e−i p(x−y). (215)

Calculation of the matrix elements of theS matrix (214) will be carried out by
standard method. Here we write down some corrections to the quantum electro-
dynamical quantities.

At present, experimental values (Casoet al., 1998) of the anomalous magnetic
moment of the electron and the muon are

1µ(e)
exp= 1.001159652193± 1× 10−11

and (216)

1µ(µ)
exp= 1.001165923± 84× 10−10

and are fully described by the local QED (Kinoshita, 1988; Kinoshitaet al., 1984;
Schwinberget al., 1981). For example, theoretical calculation forae(theor)=
[(g− 2)/2]th is given by

ae(theor)= a1
e(theor)+ a2

e(theor). (217)

The first term is due to pure electromagnetic local interaction, which is defined as
(Schwinberget al., 1981)

a1
e(theor)= (1159652411± 166)10−12

= α

2π
− 0.328478455

(α
π

)2
+ C3

(α
π

)3
+ C4

(α
π

)4
,

where

C3 = 1.1765± 0.0013, C4 = −0.8± 2.5, α−1 = 137.035963± 15× 10−6

so that

a1
e(theor)= 0.001159652455± 127× 10−12± 17× 10−12± 73× 10−12. (218)

Term±127× 10−12 is due to the fine-structure constant’s error, and other two
errors are responsible for coefficientsC3 andC4 respectively. The second term
in (217) denotes contributions of QED breakdown effects, including the size of
the electron and hadronic andZ0–boson exchange corrections (Arztet al., 1994;
DeRafael, 1994; Einhorn, 1994; Fordet al., 1983; Rodrigueset al., 1993). In
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particular, in our case

a2
e(theor)⇒ ast

e = −
α

2π
· 8

15
m`1. (219)

The correction of the linear order ofm`1 in (219) differs essentially from the
nonlocal theory (Efimov, 1977; Namsrai, 1986) in form factors and is caused by
the square-root differential operator (210), which is the main characteristic in the
interactions of the charged ring.

Since experimental values (216) are described by the local quantum electrody-
namic expressions (218), by comparing the corrections (219) with the experimental
errors in (216) one can obtain

`
(e)
1 ≤ 6.2× 10−19cm for 1µ(e)

exp,

and (220)

`
µ

1 ≤ 2.4× 10−18cm for 1µ(µ)
exp.

Ring charge correction to the Lamb shift (Brodsky and Drell, 1970) is given by

1E`
(
2S1

2
− 2P1

2

) = 11

15
· α

3

2π
Ry ·m`1. (221)

From this we conclude that

`
(e)
1 ≤ 2.9× 10−15cm. (222)

A ratio of cross-sections for the electromagnetic processese−e− → e−e−,
e+e− → e+e−, e+e− → µ+µ−, calculated by local and nonlocal ring theories, is

σnonlocal

σlocal
= [V`(−s`2

1

)]2 ≈ 1− 2
√

s`1 (223)

in accordance with formula (212) whereV`(k2`2) = [K`(k2`2)]2. Heres= (p1+
p2)2 = W2; W is the centre-of-mass energy. Experimental data (L3 Collaboration,
1993) gives the restriction oǹ1:

`1 ≤ 6.0× 10−18cm. (224)

All these bounds, (220), (222), and (224), mean that the radius of the charged
ring for leptons is smaller than∼10−19cm, so that QED is almost local theory.

14. THE SQUARE-ROOT NONLOCAL QUANTUM
ELECTRODYNAMICS

In previous sections we have proposed a simple method allowing us to work
with the square-root operator and to give its physical interpretation. The purpose of
this section is to study local and nonlocal electromagnetic interactions of charged
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spinors, with photons within this scheme. Thus, the Lagrangian corresponding to
Eq. (7) is given by

Lo
ϕ = ϕ∗(x)

√
m2− ¤ϕ(x). (225)

Instead of (225) we consider the Lagrangian density

Lo
ψ = −N

{
ψ̄(x, λ1)(−∂̂)ψ(x, λ2)+ Lo

1ψ

}
(226)

for theψ(x, λ) field. Here notations

Lo
1ψ = 9̄(x, λ1)U (λ1, λ2)9(x, λ2),

(227)

N =
∫ m

−m

∫ m

−m
dλ1 dλ2 ρ(λ1)ρ(λ2), ∂̂ = i γ µ

∂

∂xµ
,

9̄(x, λ1) = (0, ψ̄(x, λ1)),

9(x, λ2) =
(
ψ(x, λ2)

0,

)
and

U (λ1, λ2) =
(

0 λ1

λ2 0

)
are used. Equations of motion∫ m

−m
dλ ρ(λ)(∂̂ − λ)ψ(x, λ) = 0, and∫ m

−m
dλ ρ(λ)

(
i
∂ψ̄(x, λ)

∂xν
γ ν + λψ̄(x, y)

)
= 0 (228)

for theψ(x, λ) fields can be obtained from the action

A =
∫

d4x Lo
ψ (x),

by using independent variations over the fieldsψ(y, λ) andψ̄(y, λ) and by taking
the difference betweenδLo

1ψ/δψ̄(y, λ) andδ(Lo
1ψ )T/δψ(y, λ). Here we have used

the following obvious relations

δψ̄(x, λi )

δψ̄(y, λ)
= δψ(x, λi )

δψ(y, λ)
= δ(4)(x − y)δ(λi − λ)

and definition (
Lo

1ϕ

)T = 9̄(x, λ1)U T (λ1, λ2)9(x, λ2).
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It is easily seen that the propagator of the fieldϕ(x) in (7) is given by Eq. (5)
or

D(x) = − 1√
m2− ¤δ

(4)(x) = 1

i

∫ m

−m
dλ ρ(λ)

1

λ+ ∂̂ δ
(4)(x) =

∫ m

−m
dλ ρ(λ)S(x, λ).

(229)

In the momentum representation expression (229) takes the form [see Section 1,
whereÄ̃c(p) ≡ D̃(p)]

D̃(p) =
∫ m

−m
dλ ρ(λ)S̃(λ, p̂), (230)

where

S̃(λ, p̂) = 1

i

λ+ p̂

λ2− p2− i ε
(231)

is the spinor propagator with massλ in momentum space.

14.1. Square-Root Local Quantum Electrodynamics

Introducing electromagnetic interaction into the square-root formalism is
same as in the local theory. To ensure invariance of the Lagrangian (226) with
respect to the local gauge transformation

ψ ′(x, λ) = eief (x)ψ(x, λ)

and (232)

ψ̄
′(x, λ) = e−ie f (x)ψ̄(x, λ),

the gauge fieldAµ(x) should be introduced into it with the transformation rule

A′µ(x) = Aµ(x)+ ∂ f

∂xµ
. (233)

As a rule, the standard procedure of changing∂µψ → (∂µ − ieAµ)ψ in (226)
leads to the interaction Lagrangian

L in(x) = eN{ψ̄(x, λ1)Â(x)ψ(x, λ2)} (234)

in our case, wherêA = γ µAµ(x) andN is given by (227). With (234) theSmatrix
can be constructed by the usual rule:

S= Expec{λi }. T exp

{∫
d4x Lin(x)

}
, (235)
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where the symbolT is defined by (17) for the spinor fields. Expec means to take
expectation value over the random variablesλi . In the square-root formalism,
random variablesλi entering into the definition of the spinor propagator with mass
λi are not independent and have strong correlations between them. In other words,
functionsS(x, λi ) are some stochastic processes over the variableλi . Expectation
values of these processes are defined by the requirement of the gauge invariance
of the theory and possess some properties like white noise. For example, at least
for connected diagrams in the momentum space one assumes

Expec{D̃(p)} =
∫ m

−m
dλ ρ(λ)S̃( p̂, λ), (236)

Expec{γ ν1 D̃(p1)γ ν2 D̃(p2)γ ν3}

= 1

2

∫ m

−m

∫ m

−m
dλ1 dλ2 ρ(λ1)ρ(λ2)× {γ ν1 S̃( p̂1, λ1)γ ν2 S̃( p̂2, λ2)γ ν3}

×
{
δ(λ1− λ2)

ρ(λ2)
+ δ(λ1− λ2)

ρ(λ1)

}
=
∫ m

−m
dλ ρ(λ){γ ν1 S̃( p̂1, λ)γ ν2 S̃( p̂2, λ)γ ν3}

and so on. In the general case, one gets

Expec{γ ν1 D̃(p1)γ ν2 · · · γ νn D̃(pn)γ νn+1}

=
∫ m

−m
dλ ρ(λ){γ ν1 S̃( p̂1, λ)γ ν2 · · · γ νn S( p̂n, λ)γ νn+1} (237)

Definitions (236) and (237) grant the gauge invariance of the local quantum elec-
trodynamics in the square-root formalism. Indeed, in the language of the pertur-
bation theory (or the Feynman diagrammatical techniques) the gauge invariance
of the “square-root” local QED means that every matrix element of theS matrix
(235) defining the concrete electromagnetic processes has a definite structure, and
algebraical relations exist between them. In particular, in the momentum repre-
sentation, the so-called vacuum polarization diagram in the second order of the
perturbation theory has the form

5̃µν(k) = (kµkν − gµνk
2)5(k2) (238)

and the relation

∂6̃(p)

∂pµ
= −0̃µ(p, q) |q=0 (239)

is valid between the vertex functioñ0µ(p, q) and the self-energy of the “sqr
electron” 6̃(p). The relation (239) generalizes the Ward–Takahashi identity in
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QED. Here in accordance with (236) and (237) we have

6̃(p) = −ie2

(2π )4

∫ m

−m
dλ ρ(λ)

∫
d4k1(k2)γ µ S̃( p̂− k̂, λ)γ µ (240)

and

0̃µ(p, q) = ie2

(2π )4

∫
d4k1((p− k)2) Expec{γ ν D̃(q + k)γ µ D̃(k)γ ν}

= ie2

(2π )4

∫ m

−m
dλ ρ(λ)

∫
d4k1((p− k)2)γ ν S̃(q̂ + k̂, λ)γ µ S̃(k̂, λ)γ ν ,

(241)

whereS̃( p̂, λ) = (λ− p̂)−1 and1(k2) = (−k2− i ε)−1. For the proof of the rela-
tion (239) consider the identity

∂ S̃( p̂, λ)

∂pµ
= S̃( p̂, λ)γ µ S̃( p̂, λ). (242)

Further, it is easy to verify the identify (239) by differentiating (240) overpµ
and making use of the equality (242) as well as choosing other momentum vari-
ables in (241) and assumingq = 0, p′ = p+ q = p. The relations of the type
qµ0̃µ(p, q) |p′2=p2=λ2= 0 follows from the definition

qµ Expec{D̃(p1)γ µ D̃(p2)} = qµ

∫ m

−m

∫ m

−m
dλ1 dλ2 ρ(λ1)ρ(λ2)

× S̃( p̂1, λ1)γ µ S̃( p̂2, λ2)
δ(λ1− λ2)

ρ(λ1)

D̃(p1)− D̃(p2) =
∫ m

−m
dλ ρ(λ)[ S̃( p̂1, λ)

− S̃( p̂2, λ)] if q = p1− p2. (243)

Now let us demonstrate that the gauge invariance of the photon self-energy diagram
in the “square-root” QED and matrix element is given by

5̃µν(k) = e2 Expec

{∫
dn p Tr[γ µ D̃(p+ k)γ ν D̃(p)]

}
= e2

∫ m

−m
dλ ρ(λ)

∫
dn p Tr[γ µ S̃( p̂+ k̂, λ)γ ν S̃( p̂, λ)]. (244)

Here we have used then-dimensional gauge-invariant regularization procedure due
to ’t Hooft and Veltman (1972) and the definition (237). After some calculations
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we obtain the same form as (238):

5µν(k) = 8iπ
n
2

0(2)
0

(
2− n

2
n

)
(kµkν − k2gµν)

∫ m

−m
dλ ρ(λ)

×
∫ 1

0
dx · x(1− x)[λ2− k2x(1− x)]

n
2−2, (245)

which is manifestly gauge-invariant. Investigation of the higher order matrix ele-
ments for theSmatrix (235) can be carried out by a similar method as this.

14.2. Square-Root Nonlocal Quantum Electrodynamics

14.2.1. A Charge Distribution and Modification of the Photon Propagator

Distributional or nonlocal character of the propagator (28) and the wave func-
tion (29) calls for introducing the hypothesis that an electric charge of charged
“square-root” particles (say, electrons) is not pointlike and has also some distribu-
tion ρ(r ) over space. To realize this idea, we should smear out the infinitely sharp
δ function involved in the definition of the idealized concept of a pointlike charge
by the following change

eδ(r )⇒ eρ`(r ),

where a first consistent scheme is

lim
`→0

ρ`(r ) = δ(r ). (246)

Here the distributionρ`(r ) describes the extended electric charge due to the exis-
tence of some parameter,` dimension of length, which we call the fundamental
length. Of course, the form of the distributionρ`(r ) is different from (9) or (30).

In a previous work (Namsrai, 1996c) we have found explicit form of this
distribution

ρ`(r ) = 1

π
3
2 `3

exp(−r2/`2), (247)

which leads to the “nonlocal” Poisson equation

1ϕ`(r ) = −eρ`(r ), (248)

and its solution is the nonlocal Coulomb potential

ϕ`(r ) = e

4π

∫
dr ′
ρ`(r − r ′)
|r ′| . (249)

This potential is, in turn, related to a nonlocal photon propagator by

1`(p2) = 1

e

∫
d3r e−i prϕ`(r ) (250)
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in the static limit. As shown in Namsrai (1996c) with the choice of the nonlocal
photon field

A`µ(x) =
∫

d4yρ2
` (x − y)Aµ(y) (251)

the photon propagator

1`
µν(x − y) = 〈0|T{A`µ(x)A`ν(y)

}|0〉
= i

(2π )4
gµν

∫
d4 p eip(x−y)

[
ρ̃2
` (p)

]2
−p2− i ε

(252)

coincides with (250) in the static limit for the momentum space. Here

ρ2
` (x) = i

(2π )4

∫
d4 p e−i pxρ̃2

` (p) = exp

[
¤`2

8

]
δ(4)(x) (253)

is the generalized distribution, and the Fourier transform is defined as

ρ̃2
` (p) = exp

[−p2
E`

2

8

]
, p2

E = p2
4 + p2

in the Euclidean space. So that

ρ̃`(p) = [ρ̃2
` (p, p0)

]2 |P0=0 (254)

as it should be. In (254) ˜ρ`(p) is the Fourier transform of the charge distribution
(247). The extended form of the charge distribution (253) in the Minkowski space–
time is just the generalized function investigated in Efimov (1977, 1985). We see
that the modified Coulomb law (249) with (247) is

ϕ`(r ) = (e/4πr )φ(r/`), (255)

whereφ(x) is the probability integral

φ(x) = 2√
π

∫ x

0
dt e−t2

.

It is natural that in our theory, the self-energy of the extended charge is finite

W` = e

2

∫
d3r ρ`(r ) ϕ`(r ) = α

`

1√
2π

, α = e2

4π
(256)

and the photon propagator1`
µν(x) = −gµν1`(x) has no singularities at the point

x = 0,

1`(0)= 1

(2π )4
2π2

∫ ∞
0

du
u

2
e
−u`2

4 · 1

u
= 1

4π2

1

`2
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Our next aim is to construct nonlocal electromagnetic interaction of quantized fields
(15) (or (29)) and (251) with the propagators (236) (or (28)) and (252), respectively.
We call this scheme the square-root nonlocal quantum electrodynamics.

14.2.2. A Nonlocal Gauge Transformation and the Square-Root Nonlocal
Electromagnetic Interaction

In the nonlocal case, instead of (232) and (233) we use the following nonlocal
gauge transformations in accordance with the charge distribution (247) and the
nonlocal photon field (251):

Aµ(x)→ Aµ(x)+ ∂µ f (x),

ψ(x)→ ψ(x) exp

[
ie
∫

d4yρ2
` (x − y) f (y)

]
,

and (257)

ψ̄(x)→ ψ̄(x) exp

[
− ie

∫
d4yρ2

` (x − y) f (y)

]
.

This transformation gives rise to the change

∂µψ →
(
∂µ − ie

∫
d4yρ2

` (x − y)Aµ(y)

)
ψ(x)

and (258)

∂µψ̄ →
(
∂µ − ie

∫
d4yρ2

` (x − y)Aµ(y)
)
ψ̄(x)

in the Lagrangian density (226). The change (258) in turn gives the interaction
Lagrangian

L`in(x) = eN{ψ̄(x, λ1)Â
`
(x)ψ(x, λ2)} (259)

instead of (234). HerêA
` = γ µA`µ(x) and

A`µ(x) =
∫

d4yρ2
` (x − y)Aµ(y).

e is the electron (“square-root”) charge andρ`(x) is its distribution.
Formally, theSmatrix can be written in the form ofT products as in (235):

S= Expec{λi } T exp

{∫
d4x L`in(x)

}
(260)

Investigation of matrix elements for thisS matrix is similar to the local case
(for details, see Namsrai, 1996c) and Section 14.1.
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The construction of the perturbation series for theS matrix (260) is possi-
ble only within the framework of a regularization procedure. In the square-root
nonlocal quantum electrodynamics it is sufficient to regularize the nonlocal pho-
ton propagator (252) and closed fermion loops. Thus, for the regularized photon
propagator in momentum space one gets

4δph(k
2) = `2

2i

∫ −α−i∞

−α+i∞
dξ

v(ξ )

sinπξ
eδξ

2
[`2(−k2− i ε)]ξ−1, (261)

where we have used the Mellin representation

V(−p2`2) = exp

[
p2`2

4

]
= 1

2i

∫ −α−i∞

−α+i∞
dξ

v(ξ )

sinπξ
`2ξ [−p2]ξ ,

v(ξ ) = 1

0(1+ ξ )
2−2ξ , 0 < α < 1 (262)

for the Fourier transform of the charge density [ρ2
` (x)]2. Closed fermion loops are

studied by the same method as in Section 14.1.

14.2.3. The Calculation of the Primitive Feynman Diagrams in the Square-Root
Nonlocal QED

Here for pure illustrative purposes we consider simple matrix elements for the
S matrix (260) corresponding to diagrams of the self-energy and vertex function
for the “square-root” electron. Thus, the corresponding term in theS matrix for
the diagram of self-energy is given by∫ m

−m
dλ2

∫ m

−m
dλ3 ρ(λ2)ρ(λ3){−i : ψ̄(x, λ2)6`(x − y)ψ(y, λ3) :}, (263)

where

6`(x − y) =
∫ m

−m
dλ1 ρ(λ1){−ie2γµS(x − y, λ1)γµ1`(x − y)}.

Passing to the momentum representation and making use of our regulariza-
tion procedureδ that allows us to go to the Euclidean metric by usingk0→
exp[iπ/2]k4, one gets

6̃`(p) =
∫ m

−m
dλ ρ(λ) lim

δ→0
(−ie2)

∫
d4x eipxγµS(x, λ)γµ1

δ
`(x)

=
∫ m

−m
dλ ρ(λ)

e2

(2π )4

∫
d4kE

V
(
k2

E`
2
)

k2
E

γ (E)
µ

λ− p̂E+ k̂E

λ2+ (pE− kE)2
γ (E)
µ . (264)

Here pE = (−i p0, p), γ (E) = (−i γ0, γ ), and kE = (k4, k). Taking into account
the Mellin representation (262) for the form factorV(k2

E`
2), and after some
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calculations, we have

6̃` =
∫ m

−m
dλ ρ(λ)

e2

8π

1

2i

∫ −α−i∞

−α+i∞

dξ

(sinπξ )2

v(ξ )(λ2`2)ξ

0(1+ ξ )
F(ξ, p), (265)

where

F(ξ, p) = 1

0(1− ξ )

∫ 1

0
du

(
1− u

u

)ξ(
1− p2

λ2
u

)ξ
(2λ− p̂u) (266)

is a regular function in the half-planeReξ > −1. Assuming the valueλ2`2 to be
small, one can obtain

6̃`(p) =
∫ m

−m
dλ ρ(λ)

{
e2

8π2

∫ 1

0
du(2λ− up̂) ln

(
1− p2

λ2
u

)
− e2

16π2

×
[(

3 ln
1

λ2`2
+ 3v′(0)+ 3ψ(1)+ 1

)
+ 4λ2`2v(1)

(
ln

1

λ2`2
− v′(1)

v(1)

− 5

12

p2

λ2

)]
− e2

16π2
(λ− p̂)

[(
ln

1

λ2`2
− v′(0)+ 1

)
− λ2`2v(1)

p2

3λ2

]
+ O((λ2`2)2)

}
. (267)

Let us calculate the correction to the electron mass

∂m =
∫ m

−m
dλ ρ(λ)(λ0− λ) = −

∫ m

−m
dλ ρ(λ)6̃(λ)

= 3

4π
α

∫ m

−m
dλ ρ(λ)[χ + 0(1)]λ = 0, (268)

whereχ = ln[1/(λ2`2)]. Expression (268) means that in the square-root QED the
electron mass is not of electromagnetic origin.

Analogously, in accordance with the Expectation rule (237) in the momentum
space and in the Euclidean metric, the vertex function takes the form

0̃µ(p1, p) =
∫ m

−m
dλ ρ(λ)

{
− e2

(2π )4

∫
d4kE

V((pE− kE)2`2)

(pE− kE)2

× γν λ− k̂E− q̂E

λ2+ (kE+ qE)2
γµ

λ− k̂E

λ2+ kE
2
γν

}
. (269)

Again passing to the Minkowski metric and using the generalized Feynman pa-
rameterization, one gets,

0̃µ(p1, p) =
∫ m

−m
dλ ρ(λ)

{
− e2

8π

1

2i

∫ −α−i∞

−α+i∞
dξ

v(ξ )

(sinπξ )2

× (λ2`2)ξ

0(1+ ξ )
Fµ(ξ ; p1, p)

}
, (270)
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where

Fµ(ξ ; p1, p) = γµF1(ξ ; p1, p)+ F2µ(ξ ; p1, p).

Here

F1(ξ ; p1, p) = 1

0(1− ξ )

∫ 1

0

∫ 1

0

∫ 1

0
dα dβ dγ δ(1− α − β − γ )α−ξ Qξ

and

F2(ξ ; p1, p) = 1

0(−ξ )

∫ 1

0

∫ 1

0

∫ 1

0
dα dβ dγ δ(1− α − β − γ )α−ξ Qξ−1

× 1

λ2
[λ2γµ − 2λqµ + 4λ(βqµ − αpµ)+ (α p̂− βq̂)γµq̂

+ (α p̂− βq̂)γµ(α p̂− βq̂)];

Q = β + γ − αγ p2

λ2
− βγ q2

λ2
− αβ (p+ q)2

λ2
. (271)

Let us calculate the vertex function (270) for two cases: first, whenq = 0 andp
has an arbitrary value; second, whenq is an arbitrary quantity andp and p1 are
situated on theλ-mass shell. In the first case, assumingq = 0 in the formula (271)
and after some standard calculations, one gets

Fµ(ξ ; p1, p) = 1

0(1− ξ )

∫ 1

0
du

(
1− u

u

)ξ(
1− u

p2

λ2

)ξ
×
[
uγµ + 2ξupµ(2λ− up̂)

λ2− up2

]
. (272)

Comparing this formula with the expression (266) for the self-energy of the
“square-root” electron, it is easily seen that

Fµ(ξ ; p, p) = − ∂

∂pµ
F(ξ ; p) (273)

From this identity we can obtain a very important conclusion. In the square-root
nonlocal QED constructed using the concept of the extended mass and charge
densities, the Ward-Takahashi identity is valid,

0̃µ(p, p) = − ∂

∂pµ
6̃(p). (274)

In the second case, one can put

ū(p1)0̃µ(p1, p)u(p) = ū(p1)3µ(q)u(p) (275)

whereū(p1) andu(p) are solutions of the Dirac equations

( p̂− λ)u(p) = 0 and ū(p1)( p̂1− λ) = 0.



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP233-343695 September 11, 2001 9:11 Style file version Nov. 19th, 1999

1988 Namsrai and von Geramb

Substituting the vertex function (270) into (275) and after some transformations,
we have

ū(p1)Fµ(ξ ; p1, p)u(p) = ū(p1)3µ(ξ, q)u(p). (276)

Here

3µ(ξ, q) = γµ f1(ξ, q2)+ i

2λ
σµνqν f2(ξ, q2),

σµν = 1

2i
(γµγν − γνγµ),

f j (ξ, q2) = 1

0(1− ξ )

∫ 1

0

∫ 1

0

∫ 1

0
dα dβ dγ δ(1− α − β − γ )

× α−ξ Lξ−1gj (α, β, γ , q2),

L = ξα + (1− α)2− βγ q2

λ2
,

g1(α, β, γ , q2) = [(1− α)2(1− ξ )+ 2αξ ] − [βγ + ξ (α + β)(α + γ )]
q2

λ2
,

and

g2(α, β, γ , q2) = 2α(1− α)ξ. (277)

To avoid infrared divergences in the vertex function we have introduced here the
parameterε = µ2

ph/λ
2, taking into account the “mass” of the photon. Finally, one

gets

3µ(q) =
∫ m

−m
dλ ρ(λ)

[
γµF1(q2)+ i

2λ
σµνqνF2(q2)

]
, (278)

where

Fj (q
2) = − e2

8π

1

2i

∫ −α−i∞

α+i∞

dξ

(sinπξ )2

v(ξ )

0(1+ ξ )
(λ2`2)ξ f j (ξ, q2). (279)

It is easy to verify that the vertex function3µ(q) satisfies the gauge-invariant
condition

qµū(p1)3µ(q)u(p) = 0. (280)

Let us write the first terms of the decomposition for the functionsF1(q2) andF2(q2)
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over two small parametersλ2`2 andq2/λ2:

F1(q2) = α

4π

[
χ − 2σ − v′(0)+ 9

2
− 6C − 3λ2`2v(1)

]
+ α

2π

q2

λ2

×
{

2

3

(
1

2
σ − 3

8

)
+ λ

2`2

3

[
v(1)

(
−χ + 2C − 13

6

)
+ v′(1)

]}
(281)

whereσ = ln(λ2/µ2
ph), C = 0.577215. . . is the Euler constant,α = e2/4π , and

χ is defined in (268). And

F2(q2) = − α

2π

[
1− 2

3
v(1)λ2`2

]
. (282)

From this last formula we can see that corrections to the anomalous magnetic
moment (AMM) of leptons are given by

1µ = −
∫ m

−m
dλ ρ(λ)F2(q2) = α

2π

[
1− 1

3
v(1)m2`2

]
, (283)

where we have used the properties (10) for the mass densityρ(λ). The first term in
(283) corresponds to the Schwinger correction obtained in local QED. From the
experimental values of the AMM of the electron and muon one gets the following
restriction on the value of the fundamental length`:

` ≤ 1.2× 10−14 cm for 1µ(e)
exp

and
(284)

` ≤ 1.7× 10−15 cm for 1µ(µ)
exp.

14.2.4. The Self-Energy of the “Square-Root” Electron

Now the following question arises: how to coordinate classical (256) and
quantum (268) expressions for the electron self-energy. As seen here, the quantum
contribution (268)

δmqu =
∫ m

−m
dλ ρ(λ)

[
3

16π2

e2

hc
λ ln

(
h

λcr0

)2]
(285)

is even equal to zero after integration over theλ variable. The self-energy of the
electron in the classical theory is given by (256)

δmc` = e2

2c2r0

1

(2π )
3
2

(286)

Here the parameterr0 = ` is the electron radius. Comparing formulas (285) and
(286) shows that the quantum correction to the mass value of the electron in
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difference of the classical one depends on its mass and increases only as the
logarithmic function atr0→ 0. The passageh→ 0 in (285) that corresponds to
the classical limit leads to an explicitly senseless result; therefore formulas (285)
and (286) say that the corresponding principle between the quantum and classical
theories is not valid in the problem of the self-energy of the electron. However, in
our scheme one can expect that the corresponding principle will satisfy exactly.
Indeed, it turns out that in the second order of the perturbation theory quantum
corrections,δmqu, goes to classical ones,δmc`, at the limith→ 0, and all higher
order contributions turn to zero ath→ 0. The proof of this assertation is the same
as in the Efimov (1977) nonlocal theory.

Let us consider in detail the structure of the integral defining the corrections
to the electron mass. For this purpose we turn to the expression (264) and use the
standard definition

δλ = −λ[ A(λ2)+ B(λ2)]

and

Z2− 1= B(λ2)+ 2λ2[ A′(λ2)+ B′(λ2)],

whereδλ andZ2 are renormalization constants in the mass operator

6r (p) = {λA(p2)+ B(p2) p̂} + δλ− (Z2− 1)(p̂− λ),

and choose the system of reference, where the vectorpE = (−iλ, 0), one gets

δm=
∫ m

−m
dλ ρ(λ)

e2

(2π )4h

∫ d4kE V
( k2

E`
2

h2

)
k2

E

· 2λ− 2ik4

k2
E− 2iλk4

. (287)

Here we have shown an explicit dependence on the Planck constanth since we
will be interested in the limith→ 0. Integrating over the Euclidean angles and
some transformations later, the expression (287) takes the form

δm=
∫ m

−m
dλ ρ(λ)

λ

(2π )2

e2

h

∫ ∞
0

du V

(
4

(
`

λ0

)2

u

)
Q(u) (288)

where Q(u) = 2u+ (1− 2u)
√

1+ 1/u, andλ0 = h/λc is the Compton wave-
length of the electron with the “stochastic” massλ. From the formulas obtained
we see that contributions to the massδm have two limits (285) and (286) for
the cases̀ ¿ λ0 and`À λ0, respectively. Indeed, asymptotic behaviour of the
function Q(u) is given by

Q(u) =
{

1/
√

u, u¿ 1;
3/4u, uÀ 1.

On the other hand the functionV(u) = exp[−u/4] is the order of unit foru ≤ 1
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and decreases rapidly foru > 1, such that

δm'
∫ m

−m
dλ ρ(λ)λ

e2

hc

∫ ( λ0
`

)2

0
duQ(u).

For`¿ λ0 contribution to the integrand is given by large quantities ofu; therefore,∫ ( λ0
`

)2

0
duQ(u) ' 3

4

∫ ( λ0
`

)2

1

du

u
= 3

4
ln

(
λ0

`

)2

and

δm'
∫ m

−m
dλ ρ(λ)

3λ

16π2

e2

hc
ln

(
λ0

`

)2

= 0, (289)

i.e., we obtain the quantum field expression for the self-mass (285). For`À λ0

contribution to the integrand is defined by small values ofu, and therefore∫ ( λ0
`

)2

0
duQ(u) '

∫ ( λ0
`

)2

0

du√
u
= 2λ0

`

and

δm'
∫ m

−m
dλ ρ(λ) · λ e2

hc
· const

h

λ · c · ` =
1

(2π )
3
2

· e2

2c2`
,

i.e., we get the classical expression for the self-mass (286), which does not depend
on the Planck constant or the electron massm.

Thus, formulas obtained for the corrections to the mass (285) and (286)
are valid for any relations between the fundamental length` and the Compton
wave length of the electronλ0 = h/λc, and for the limits̀ ¿ λ0 and`À λ0 give
true asymptotic value for quantum and classical theories, respectively.

Finally, it should be noted that as shown in Efimov (1977) contributions from
all higher orders of the perturbation theory turn out to be zero at the limith→ 0.
This assertation is valid in our case. Moreover, the equality (289) holds for the full
massive operator̃6(p) on theλ-mass shell:

6̃(p) = e2

(2π )4hc

∫
d4k γµG(p− k)0µ(p− k, p)1(k) (290)

whereλ2 = p2, p̂u(p) = λu(p), G and1 are full Green functions of the electron
with the stochastic massλ and photon, and0 is full vertex part. We know that
Green functions of the electron and photon decrease asG(k) = O(1/k) and1(k) =
O(1/k2) for k→∞. In accordance with the Ward identity,

0µ(p− k, p) = O

(
1

k

)
.
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From this we conclude that expression (290), like (285), diverges as a logarithmic
function and is proportional toλ and therefore

δmfull
qu = −

∫ m

−m
dλ ρ(λ)6(p2 = λ2) = 0

for all orders of the perturbation theory.
In conclusion we notice that in the square-root quantum electrodynamics it

is not necessary to regularize the square-root electron mass, i.e., the physical mass
of the electron,m, coincides with the bare one,mo, in the Lagrangian (225).

15. EXTENDED CHARGES AND SUPERFIELD

Recent rapid and exciting developments in the theories of spread-out (ex-
tended) or nonlocal objects like strings and D and p branes, and in their duality
properties, need a practical working model allowing to shed light on those low-
energy limits by means of experimental (particle) physics. In this section we con-
sider extended electric charges like charged ring, disk, holed coin, and the torus
in an attempt to understand an essential difference between these structures in
the point of view of the supersymmetric string theory (Bailin and Love, 1994). It
turns out that all considered innermost structures of charge: except the torus, all
are associated with simple nonlocal (Efimov, 1977, 1985; Namsrai, 1986) or bilo-
cal (Yukawa, 1950a,b,c) theories with formfactors, while the charged torus gives
rise to the appearance of a new kind nonlocal theory, wherein boson and fermion
fields are generated simultaneously. Roughly speaking, the charged tori radiates
or absorbs at the same time photon and neutrino-like massless fermion.

Our construction of the theory of extended charges is based on the Feynman–
Schwinger–Yukawa correspondence rule, which asserts that in the static limit,
potentials between two sources (interacting charges) are associated to the Fourier
transform of propagators of force-transmitting particles in the momentum space
and vice versa. For example, see formulas (51)–(54), (205), (206), and Section 11.

The next step is to understand the physical meaning of square-root (Weyl,
1927) propagators (−p2− i ε)−1/2 and (m2− p2− i ε)−1/2, (p2 = p2

0 − p2),
which appeared in the charged and massive torus cases.

As seen below, solutions (15) and (22), and (13) and (21) with the properties
(10) allow us to shed light on the torus field by means of the square-root-operator
formalism. In other words, the fermion partner of the boson field, which are si-
multaneously generated by the torus field, is not the usual Dirac spinor but a new
kind of spinor field with random mass distribution over the torus. In the massless
limit m→ 0 they become the photons (gravitons) and neutrino-like particles, the
former being carriers of electromagnetic (or gravitational) interactions. Notice that
due to the distributionρ(λ) (10) in most of the cases, integration over the vari-
ableλ can be done onto an unit circle. This property allows us to present torus
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Fig. 2. (a) One-dimensional extended charge of the ring. (b) Two-dimensional extended charge of
the disk. (c) Two-dimensional extended charge of the holed coin.

fields (strings) onto a circle winding around the torus, indicating the importance
of square-root-operator formalism in torus physics.

15.1. One- and Two-Dimensional Extended Charge

15.1.1. Charge of the Ring

Let us consider the ring charge (Fig. 2(a)) and calculate its potential. Here the
electric chargee is distributed uniformly with a linear densityσ on a circle of the
radii `. The charge elementdecorresponding to a linear differential lengthdsof
the ring is given byde= σds. Sinceds= `dϕ, we gete= 2π`σ . The potential
at the pointM , generated by the elementdsof the ring is

dUr(M) = 1

4π

de√
z2+ (`2+ ρ2− 2`ρ cosϕ)

, (291)

where we have used the cylindrical system of co-ordinates and the cosine’s theorem
for triangle OAB. After some elementary integrations we obtain the potential of
the ring in the form

Ur(z, ρ) = e

4π
√

z2+ (ρ + `)2

2

π
· F
(
π

2
,

2
√
`ρ√

z2+ (ρ + `)2

)
, (292)
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whereF(π2 , k) is the complete elliptic integral of the first kind,

K (k) = F

(
π

2
, k

)
= π

2
Nn · k2n = π

2
F

(
1

2
,

1

2
; 1;k2

)
. (293)

HereF(α, β; γ ; z) is the hypergeometric function and

k = 2
√
`ρ√

z2+ (ρ + `)2
, Nn = 1+

∞∑
n=1

[
(2n− 1)!!

2n · n!

]2

. (294)

For the caseρ = 0 we have the well-known textbook formula

Ur(z) = e

4π
√

z2+ `2
.

Notice thatUr(0)= e/4π` is finite at the origin.
Now a question arises: which kind of a field does the ring charge radiate or

absorb compared to the pointlike Coulomb charge? We use the standard method as
mentioned previously. Let us consider a radiation field in the direction of thezaxis,
where momentum of the particle has the componentsp = (pz, 0, 0)= (p, 0, 0),
so that the Green function associated with the ring potential is given by

D̃r(p) =
∫

d3r e−i pr (Ur (r )/e), (295)

where the potentialUr(r ) is expressed by the formula (292). Taking into account
the series (293) and using the cylindrical system of co-ordinates one can represent
this function in the form

D̃r(p) = Nn · Dn
r (p), p =

√
p2. (296)

Here

D̃
n
r (p) = 4n`n

∫ ∞
0

dρ · ρn+1
∫ ∞

0
dz cospz[z2+ (ρ + `)2]−n− 1

2 (297)

and notationNn is used from (294). The last integral is calculated explicitly.

I =
∫ ∞

0
dzcospz[z2+ (ρ + `)2]−n− 1

2

= 1√
π

(
2(̀ + ρ)

p

)−n

cosπn · 0
(

1

2
− n

)
Kn(p(ρ + `)).

Now let us use the Mellin representation for the Bessel functionKν(z) of the
imaginary argument

Kν(z) =
√
π

2v+1

1

2i

∫ −β−i∞

−β+i∞

dξ

sinπξ

1

0(1+ ξ )

0
(−ν − ξ

2

)
0
( 1− ξ

2

) zv+ξ , (298)
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where 2ν < −β. So that expression (297) takes the form

D̃
n
r (p) = π 0(n+ 2)

0
(

1
2 + n

)`2Mξ · (p2`2)ξ−1, (299)

where we have used short notation

Mξ = 1

2i

∫ −β−i∞

−β+i∞

dξ

sin2πξ

1

(1− 2ξ + 2n)

0
(

1
2 + ξ − n

)
0(ξ )0(1+ 2ξ − n)

(−1≤ β < 0).

(300)
Finally, in the four-dimensional momentum space the Green function of the

nonlocal photon field generated by the ring charge acquires the form

D̃r(p) = 1

−p2− i ε
Vr(−p2`2), p2 = p2

0 − p2, (301)

where

Vr(−p2`2) = πNn
0(n+ 2)

0
(
n+ 1

2

) D̃
n
r (p) (302)

and

D̃
n
r (p) = Mξ [−p2`2]ξ . (303)

HereNn andMξ are given by (294) and (300). Further, we use the Mellin represen-
tation (303), displace its integration contour to the right, and take corresponding
residues. Then the resulting form factorVr(−p2`2) converges very well. For ex-
ample, sum of the first 11 terms in (299) is

D̃r(p) = 1

−p2− i ε
− 23

5 · 4 · 11
`2+ O(p2`4). (304)

Thus, we have arrived at the Efimov (1977) nonlocal theory with form factor (302)
(see, also, Namsrai, 1986) for the ring charge case.

15.1.2. Charge of the Disc

In this case, the surface element of charge defines asde= λds · sdϕ, where
λ is a surface charge density. Here thin ring of radiuss and widthdson the disc
with radii ` is considered (Fig. 2b). For the disc charge, expression (292) for the
potential acquires the form

Ud(M) = λ

4π

∫ `

0
ds · s

∫ 2π

0
dϕ

1√
z2+ s2+ ρ2− 2sρ cosϕ

. (305)

After similar and elementary calculations as shown previously one gets

D̃d(p) = 1

−p2− i ε
Vd(−p2`2) ∼ 1

−p2− i ε
− 23̀ 2

10 · 4 · 11
+ O(p2`4), (306)
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where

Vd(−p2`2) = πNn · 0(n+ 2)

0
(
n+ 1

2

) D̃
n
d(p) (307)

and

D̃
n
d(p) = Mξ · 1

1+ ξ [−p2`2]ξ (308)

These formulas say that two-dimensional charged disc radiates or absorbs nonlocal
photon fields, no other physical characteristics exist here.

15.1.3. Charge of the Holed Thin Coin

In this case potential (305) is reduced to the form (Fig. 2c)

Uhc = λ

4π

∫ R

r
ds · s

∫ 2π

0
dϕ

1√
z2+ s2+ ρ2− 2ρscosϕ

, (309)

whereRandr are big and small radius of the holed coin. Propagator of the nonlocal
photon generated by the charged holed thin coin is given by

D̃hc(p) = 1

−p2− i ε
Vhc(−p2R2). (310)

Here

Vhc(−p2R2) = πNn · 0(n+ 2)

0
(
n+ 1

2

) D̃
n
hc(p) (311)

and

D̃
n
hc(p) = R2

R2− r 2
Mξ · 1

1+ ξ [−R2 p2]ξ
[
1−

(
r

R

)2ξ+2]
, (312)

whereNn andMξ are given by (294) and (300), respectively.
Thus we obtain similar results as in the ring and disc charges cases, as it

should.

15.2. Three-Dimensional Extended Charge

15.2.1. Charge of the Torus and Its Potential

Now we turn to study a very interesting three-dimensional object, where the
electric charge is distributed uniformly on the surface of the torus.

At first sight one may think that the torus has a complicated geometrical
structure to set up its potential. However, if we look at it carefully we can observe its
nice geometric construction, having common characteristics with the ring, except
for an extra one-degree-of-freedom winding around the torus.
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Fig. 3. Three-dimensional extended charge of the torus.

Let us consider the surface differential element (protruberant trapezium)ds
on the torus, the centre of which belongs to the point N (Fig. 3). Further, we trace
two lines from the point N: AN= h is perpendicular to the plane OXY and ND
crosses with the central line of the torus, i.e. ND= (R− r )/2. An angle< ADN
is denoted byα, 0≤ α ≤ 2π . Thus, by construction

NM2 = (z− h)2+ AB2, (313)

where
h = R− r

2
sinα, AB2 = ρ2+ L2− 2ρL cosϕ,

L = r + R− r

2
(1− cosα)

(314)

Since the medium line of the trapeziumds is ON · dϕ = √h2+ L2 dϕ, its area is

ds=
(

R− r

2

)
dα

√(
r + R− r

2
(1− cosα)

)2

+
(

R− r

2

)2

sin2 α · dϕ.
(315)

Thus, the element of charge corresponding to the surface differential formdsof
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the torus is defined as

de= λ ds= λ
(

R− r

2

)√
L2+ h2 dα dϕ = R− r

2
· λ · r

√
1+ q2 sin2 α

2
dα dϕ

(316)

whereq2 = R2/r 2− 1,λ is the surface charge density,ϕ is the polar angle (0≤
ϕ ≤ 2π ), andα is the winding angle around the torus. The potential element
dUT(M) generated by the chargedeof the torus at the point M given by

dUT(M) = de

4π
√

NM2
, (317)

wheredeand NM2 are defined by expressions (316) and (313).
Integration over the polar angledϕ (as was done in the ring charge case) gives

UT(z, ρ) = πλ(R− r )
∫ 2π

0
dα
√

L2+ h2
1

4π
√

(z− h)2+ (ρ + L)2

× 2

π
F

(
π

2
,

2
√

Lρ√
(z− h)2+ (ρ + L)2

)
, (318)

where parametersL andh are given by (314). We see that potential form (318) is
very similar to the ring charge one. This allows us to integrate all results obtained
in the torus case up to the end. Let us calculate the surface of the torus. From (316)
it follows

St =
∮
6

ds= 4πR(R− r )E

(
π

2
,

√
1− r 2

R2

)
.

The torus potential (318) is also finite at the origin

UT(0)= e

8RE
(
π
2 ,
√

1− r 2

R2

) ,

whereE(π/2, k) is the complete elliptic integral of the second kind.

15.2.2. The Green Function Generated by Charge of Torus

According to the general rule expounding in previous sections, the Green
function caused by the torus charge is given by

D̃t(p) =
∫

d3r e−i pr (UT/et) (319)
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Making use of formulas (315) and (316), one can easily calculate the full charge
of the torus

et = λ
(

R− r

2

)∫ 2π

0
dϕ
∫ 2π

0
dα
√

L2+ h2 = 4πR(R− r )λE

(
π

2
,

√
1− r 2

R2

)
.

(320)

Now we use the cylindrical system of co-ordinates and carry out some calcu-
lations as in the ring charge case. The result reads

D̃t(p) = πNn · 0(n+ 2)

0
(
n+ 1

2

) D̃
n
t (p), (321)

where

D̃
n
t (p) = 2πλ

et

(
R− r

2

)∫ 2π

0
dα
√

L2+ h2 eiphL2Mξ (−p2L2)ξ−1. (322)

Here definitions ofNn andMξ are the same as in (294) and (300).
Making use of the Mellin representation

eiph = 1

2i

∫ −γ−i∞

−γ+i∞

dβ

sinπβ

(ph)2β

0(1+ 2β)

[
1+ i ph

1

1+ 2β

]
, (−1 < γ < 0)

(323)
one can see that propagator (321) consists of two different parts

D̃t(p) = D̃
ph
t (p)+ D̃

f
t (p), (324)

where

D̃
ph
t (p) = 1

−p2− i ε
Vph

t (−p2R2), D̃
f
t (p) = i√

−p2− i ε
V f

t (−p2R2).

(325)
Here

Vph
t (−p2R2) = πNn · 0(n+ 2)

0
(
n+ 1

2

) D̃
ph
nt (p), (326)

and

V f
t (−p2R2) = πNn · 0(n+ 2)

0
(
n+ 1

2

) D̃
f
nt(p). (327)

Following expressions hold for functions̃D
ph
nt (p) andD̃

f
nt(p):

D̃
ph
nt (p) = r

4πE

∫ 2π

0
dα

√
1+ q2 sin2 α

2

1

2i

×
∫ −γ−i∞

−γ+i∞

dβ
(

h
L

)2β
sinπβ0(1+ 2β)

Mξ (−p2L2)β+ξ (328)
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and

D̃
f
nt(p) = r

4πE

∫ 2π

0
dα

√
1+ q2 sin2 α

2
· h · 1

2i

×
∫ −γ−i∞

−γ+i∞

dβ
(

h
L

)2β
sinπβ0(2+ 2β)

Mξ (−p2L2)β+ξ (329)

whereq2 = R2

r 2 − 1; E is the complete elliptic integral of the second kind.
Assumingp2R2¿ 1 one can calculate integrals (328) and (329). Displac-

ing contours in (328) and (329) to the right and taking residues, and after some
elementary integration over the angleα one gets

Vph
t (−p2R2) = 1+ r 2 p2

5 · 4 · 11

{
23+ 46

3

r

R+ r

1

E

(
2

R2

r 2
E − F − E

)
+ R2

15E(R+ r )2

[
2

(
14

r 2

R2
− 101

)
F + R2

r 2
E

×
(

404− 519
r 2

R2
+ 289

r 4

R4

)]}
+ O(p4R2) (330)

and

V f
t (−p2R2) = r R

3(R+ r )

1

E

(
R

r
− r 2

R2

)
+ O(p2R3). (331)

More shortly,

Vph
t (−p2R2) ∼ 1+ 101

5 · 11 · 15
R2 p2

V f
t (−p2R2) ∼ 2

3π
R (332)

FunctionsE(π2 ,
√

1− r 2

R2 ) and F(π2 ,
√

1− r 2

R2 ) in (330) and (331) are complete
elliptic integrals of the second and the first kinds, respectively. It should be noted
that it is impossible to explain formulas (324) and (325) as one particle exchange
between interactions of the torus charges. This problem will be discussed in
Section 15.4.

Generalization of formulas (324)–(329) for the massive case is not difficult.
By the common rule we can change−p2→ m2− p2 in these formulas and obtain
the nonlocal Klein–Gordon propagator and its square-root version.
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15.3. The Square-Root Green Function and Physical Interpretation

From expression (325) we see that in torus physics the square-root Green
function appears. That is,

i√
−p2− i ε

= lim
m→0

i√
m2− p2− i ε

= lim
m→0

i

π

∫ 1

−1

dλ√
1− λ2

p̂+mλ

λ2m2− p2− i ε
,

(333)

where p̂ = γ µpµ; γ v are the Diracγ matrices. Since

1

π

∫ 1

−1

dλ√
1− λ2

= 1

we obtain the propagator of a massless fermion in the limitm→ 0 as

1̃
f
t (p) = i

p̂

−p2− i ε
. (334)

For x space, first term in (324) gives the nonlocal photon propagator

Dph
µv(x) = igµv

1

(2π )4

∫
d4 p eipx D̃

ph
t (p).

Now let us consider the case when the mass of a particle is distributed uni-
formly on the torus: Its full mass is

mt =
∮

dmt = 4πR(R− r )χE

(
π

2
,

√
1− r 2

R2

)
, (335)

whereχ is the surface density of a particle mass. On the other hand, equation of
motion for some unknown particle and its Green function satisfy Eqs. (7) and (5),
and its energy is given by

E =
∫ 1

−1
ρ(λ) dλ

√
p2+m2λ2 = 2

π

√
m2+ p2E

(
π

2
,

m√
m2+ p2

)
(336)

or

E = EEin · N ′n · k2n, (337)

whereEEin =
√

m2+ p2, k = m/EEin, and

N ′n = 1−
∞∑

n=1

[
(2n− 1)!!

2n · n!

]2 1

2n− 1
.

We see that for square-root particles the Einstein or relativistic formula for the
particle’s energy is changes little relative to the formulas (336) and (337). For
ultrarelativistic particles this difference becomes smaller and smaller.

This fact tells us that in the processes of radiation of particles by the charge
of the torus, the energy balance may be lost but it does not take place. From the
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Einstein formula for energy of a particle, energy of the torus is

Et = mt
c2√

1− v2
t

c2

= 4πR(R− r )χc2√
1− v2

t
c2

E

(
π

2
,

√
1− r 2

R2

)
(338)

wherevt is the torus velocity. To compensate energy loss in the processes of
radiation the torus could change its innermost structure, i.e., parametersr andR
defining its structure become changeable quantities in accordance with formula
(336). For example, letr run between 0 andR, then the caser = 0 gives the rest
energy of the torus, namely

m0
t = 4πR2χ , (339)

so that formula (338) takes the form

Et =
(

R− r

R

) E
(
π
2 ,
√

1− r 2

R2

)
√

1− v2
t /c2

m0
t c2, 0≤ r ≤ R, (340)

which is co-ordinated with formula (336), as it should. In other words, the torus
is able to gain energy from vacuum by changing its innermost structure defined
by parametersr andR. The changing structure of the torus may be understood in
terms of the Lorentz contraction. Indeed, at rest the torus has maximum surface
(i.e., surface of the sphere (339), which corresponds tor = 0) and the hole in it
has not appeared. When the torus moves, its transverse size begins to contract,
and a hole starts to form in the torus and its surface becomes smaller and smaller.
On the other hand, when the torus turns to move, its energy is increased due to
the Lorentz factor

√
1− v2

t /c2 in (340). Thus, we observe an important fact that
energy of a particle (square-root) depends, at the same time, on its velocity and on
its size (structure).

In the limiting casevt = c surface of the torus tends to zero (i.e.,r = R),
as does the Lorentz factor, simultaneously. As a result a particle ring acquires a
finite-energy value, traveling at the speed of light, as it should. Notice that in this
limiting case the torus is converted to the ring with radiiR. On the contrary, when
the torus loses its energy in processes of radiations its speed decreases and at the
same time its surface increases. As a result, the torus is able to gain energy from
vacuum. Further, the torus with gained energy is again radiated and so on. This
chain of processes is repeated infinite times—at least up to the time when the torus
goes to rest.

All these statements can be expressed by a single mathematical formula.
Indeed, comparing the two formulas (336) and (340)

2

π

√
m2+ p2E

(
π

2
,

m√
m2+ p2

)
∼ R− r

R

m√
1− β2

E

(
π

2
,

√
1− r 2

R2

)



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP233-343695 September 11, 2001 9:11 Style file version Nov. 19th, 1999

Square-Root Operator Quantization and Nonlocality 2003

and assuming√
m2+ p2 = m(1+ β2)

1
2 = R− r

R
m(1− β2)−

1
2 ,

one obtains

β2 =
√

1−
(

R− r

R

)2

=
{

0 for r = 0,
1 for r = R,

(341)

as it should. Herep = mvt, andβ2 = v2
t /c

2.
This deeper connection between gain of energy by changing structure of a

particle may be also understood in terms of fluctuation in space–time points around
the torus. We suppose that the motion of the torus satisfies the square-root-operator
equation like (7). Then for its Green function there exists another representation

S(x) =
∫ 1

−1
ρ(λ) dλ

1

(2π )4

1

i

∫
d4 p eipx p̂+mλ

m2λ2− p2− i ε

=
∫ 1

−1
dλ λ3ρ(λ) Sc (xλ, m), (342)

and for the wave function

ϕ(x) =
∫ 1

−1
dλ λ

3
2ρ(λ)ψ(xλ, m). (343)

Hereψ(xλ, m) and Sc (xλ, m) are the Dirac spinor of massm and its Green
function but space–time points,xλ = x0λ, xλ, have the random distributionρ(λ)
with different weightsλ3 andλ3/2, depending on the physical characteristics of
the torus.

Finally, after integration of the variableλ one can represent the Green func-
tion: its the Euclidean version and the plane wave solution of a square-root particle
in the following forms

S(x) = 3

8

1

(2π )4

∫
d4 p

m+ p̂

m2− p2− i ε
(px)1F2

(
5

2
;

3

2
, 3;− (px)2

4

)
, (344)

SE(xE) = −i γ µ
∂

∂xE
µ

1

6π2xE

{
1

xE
F

(
1

2
; 1,

5

2
; 1− m2x2

E

4

)
− m2xE

4

}

×F

(
3

2
; 2,

5

2
; 1− m2x2

E

4

)
,
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and

ϕp`(x) = (1− i )
u(p)√

2ω

1

(2π )
5
2

{
B

(
1

2
,

5

4

)
F

(
5

4
;

1

2
,

7

4
;− (px)2

0

4

)

+ (px)0B

(
1

2
,

7

4

)
F

(
7

4
;

3

2
,

9

4
;− (px)2

0

4

)}
. (345)

Herepx = p0x0− px, (px)0 = ωt − px, ω =
√

m2+ p2, xE =
√

x2
1 + · · · + x2

4,
B(x, y) = 0(x)0(y)/0(x + y) andF =1 F2(α;β, γ ; z) is the generalized hyper-
geometric function.

15.4. Appearance of a Superfield in the Radiation of the Torus Charge

Formulas (324) and (325) allow us to suppose that the torus charges radiate
absorb complicated fields consisting of the nonlocal photon and nonlocal massless
spinor fields. We call these fields superfields. However, as seen above in this mixed
(or super) fields ratio (γ = nγ /nphotino) of numbers of photons and massless spinors
generated simultaneously by the charge of the torus is of the order of∼1/

√
R,

whereR is the big radius of the torus. On the other hand, from experimental data on
testing local quantum electrodynamics it is well-known that if the electrical charge,
say the electron possesses some innermost structure defined by the parameterR
then its value is smaller or of the order ofR∼ 10−16cm. Therefore the ratio
γ ∼ 108. In this connection the following question arises. Why is it difficult to
detect superpartners of usual particles? The simple answer is that they exist in
very small portions with respect to usual particles, in superfield mixtures. In the
language of supersymmetry, photon and photino fields can be formally present in
the superfield form

φ =
(
θ̄ σ̄ νθAν
θ̄ψ

)
, φ∗ = (θσµθ̄Aµ, ψθθθ ), (346)

whereAµ andψ are the photon and the massless spinor fields,θ andθ̄ are Grassman
variables. By means of these fields the Green function (324) inx space can be
written in the form

Dφ(x − y) =
∫

d2θ

∫
d2θ̄〈0|T{φ∗(x)φ(y)}|0〉

= ηµνηµνDph(x − y)+ Df (x − y). (347)

Here we have used the definitons

σµσ̄ ν = ηµν + 2σµν , θσµνθ = 0,
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and ∫
d2θ θ2 =

∫
d2θ̄ θ̄

2 = 1. (348)

Fourier components ofDph(x) andDf (x) are given by (324) and (325).
In the limit R→ 0 we can also write a formal equation∫ ∫

d2θd2θ̄

(
¤ · ηµθσµθ̄ 0

0 2
3π R
√
¤ · θ̄ θθ

)(
θ̄ · σ̄ vθAo

µ

θ̄ψo

)
= 0. (349)

HereAo
µ andψo are the local photon and local massless spinor fields. From this it

follows

nν · ¤Ao
ν +

2

3π
R · √¤ψo = 0, (350)

wherenν is an arbitrary unit constant vector belonging to the direction of the
radiation.

In accordance with formulas (324) and (325) for the massive case−p2→
m2− p2. Expressions (346), (347), (349), and (350) are reduced to the forms

φm =
(
θθϕ(x)
θ̄3(x)

)
, φ∗m = (ϕ∗(x)θ̄ · θ̄ ,3(x)θ̄ θθ ), (351)

Dm
φ (x − y) =

∫
d2θ

∫
d2θ̄〈0|T{φ∗m(x)φm(y)}|0〉

= Dm(x − y)+
∫ 1

−1
dλ ρ(λ)Sm(x − y, mλ), (352)

∫
d2θ

∫
d2θ̄

(
(m2− ¤)θ̄ · θ̄ 0

0 2
3π i R
√

m2− ¤ · θ̄ θθ
)(

θθϕ(x)
θ̄3(x)

)
= 0, (353)

and

(m2− ¤)ϕ(x)− 2

3π
Ri
(√

m2− ¤
)
3(x) = 0. (354)

whereϕ(x) is the Klein–Gordon scalar particle of massm and3(x) is the square
root particle defined by the expression

3(x) =
∫ 1

−1
dλ ρ(λ)ψ(x, mλ) (355)

Hereψ(x, mλ) is the usual Dirac spinor with massmλ. FunctionsDm(x − y)
andSm(x − y, mλ) in (352) are nonlocal scalar and nonlocal spinor propagators,
respectively.

Thus, we see that in physics of the torus superfields the inescapable appear.
Of course, when the size of the torus tends to zero the superpartners of the photon
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and of usual scalar fields disappear in co-ordinating with the point of view of
local quantum field theory. Electromagnetic interaction of the charged torus will
be presented elsewhere.

APPENDIX: RADIATION IN LONGITUDINAL DIRECTIONS

In the above sections we have considered transverse radiations taking place
in directions perpendicular to the plane in which extended charges are located.
Strictly speaking, some longitudinal radiations may occur in directions parallel to
thez= 0 plane. Now we study such possibilities. In this case, the Green function
(295) generated by the ring potential (292) takes the form

D̃
long
r (p) =

∫ ∞
−∞

dz
∫ ∞

0
dρ ρe−i pρ

∫ 2π

0
dϕ

[
Ur(ρ , z)

e

]
. (356)

Using series (293) with (294) one can see that the main modulen = 0 of (356) is
diverged. We regularize it as follows. Integration of thez variable gives

i1 = 2
∫ ∞

0
dz[z2+ (ρ + `)2]−n− 1

2 =
√
π0(n)

0
(
n+ 1

2

) (ρ + `)−2n, (357)

where divergence is associated with the0-function0(0)= ∞.
One can easily calculate integration over the variableρ:

i2 = 4n`n
∫ ∞

0
dρ ρ1+n(ρ + `)−2ne−i pρ = 1

2i

∫ −γ−i∞

−γ+i∞

dβ

sinπβ

1

0(1+ 2β)

×
{

I1(p, β)− i

1+ 2β
I2(β, p)

}
. (358)

We introduce regularization procedure into these integralsI1 and I2, which are
defined by

I1 = 4n`2β+2
∫ ∞

1
dy y−ν1(y− 1)ν1−µ1−1

= 4n`2β+2 lim
λ→0

∫ ∞
1

dy yλ−ν1(y− 1)ν1−µ1−1(αy− 1)−λ (359)

and

I2 = 4n`2β+3 lim
λ→0

∫ ∞
1

dy yλ−ν2(y− 1)ν2−µ2−1(αy− 1)−λ. (360)

Here ν1 = ν2 = 2n, µ1 = n− 2β − 2,µ2 = n− 2β − 3, andα is an arbitrary
constant arisen from the regularization of the propagator in the longitudinal
directions.
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Taking into account the integrals (357)–(360) one gets

D̃
long
r (p) = 2π

{ ∞∑
n=0

{
(2n− 1)!!

2nn!

}2} n

02
(
n+ 1

2

) lim
λ→0

α−1−λ 0(1+ λ)

λ
· `

2

2i

×
∫ −γ−i∞

−γ+i∞

dβ

sinπβ

(−p2`2)β

0(1+ 2β)

{
0(−2β + n− 1)0(n+ 2β + 2)

× F(2n+ 1, n− 2β − 1; 2;α−1)+ i p2`√
−p2

0(−2β + n− 2)

× 0(n+ 2β + 3)F(2n+ 1, n− 2β − 2; 2;α−1)

}
(361)

where we have used the hypergeometric function’s property

lim
γ→0

1

0(γ )
F(α, β; γ ; z) = α · β · zF(α + 1,β + 1; 2; z) (362)

and the conditional notation (2n− 1)!! = 1 for n = 0, 1. In (361), for the first and
second terms−1 < γ < −1/2 and−3/2 < γ < −1, respectively. We see from
(361) that the principle modulesn = 0 in infinite series tends to zero.

Now we should remove regularization by taking limitλ = 0; however, due
to an arbitrary choice of the parameterα one can supposeα = 1/λ, and therefore
whole integral (361) equals to zero. In other words, after removal of regularization
its trace does not remain in the expression of the Green function. As a result,
radiations by extended charges like ring, disk, holed coin and torus do not take
place in the longitudinal directions.
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