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Square-Root Operator Quantization
and Nonlocality: A Review

Kh. Namsrail*?3* and H. V. von Geramb®

A square-root-operator formalism is developed for quantum systems described with
nonrelativistic and relativistic equations of motion. Spectral representation for Green’s
functions are designed for particles with spin 0, with the implication of its generalization

to other spin values. Nonlocal operators suggest that a duality exists between physical
particles and dual partners, which are tachyonic mathematical particles. It is shown that
nonlocal operators result naturally from square-root operators, with the implication that
microcausality holds only asymptotically. Applications help enlighten the formalism in
order to envisage realistic situations with Smtiriger equations, Higgs fields, vacuum
fluctuations, extra-dimensional methods in the potential theory, and electromagnetic
interactions of extended charges and their conseguences. It turns out that the innermost
structure of these extended charges is associated with nonlocal photon propagators.
It is shown that the propagator arisen from the charged torus potential consists of two
different parts: a nonlocal photon propagator and a propagator of neutrino-like particles,
which is described by square-root-operator equation. We examine the potential of the
torus and its propagator as the appearance of superfields in terms of the photon and the
massless fermion (photino).

The concept of extended and nonlocal objects as well as their interactions
receives rising interest in physics and mathematics. String theory is an exam-
ple for which far-reaching, detailed studies exist (Greeal., 1986; Polchinski,
1998). Nonlocality is a feature of quantum field theory (QFT), which was already
realized in its infant stage when the ultraviolet divergence terms arose. If we char-
acterize the electron size with a parametgits classical field energy is€?/¢,
whereas in QFT it is~e?melogme. For a pointlike electron witlf — 0, both
values diverge and thus lose their meaning. One possible way out of this diver-
gence problem is to take refuge in nonlinearity and, in particular, nonlocality. The

Linstitute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia.

2physics Department, Ulaanbaatar University, Ulaanbaatar-51, Mongolia.

3Theoretische Kernphysik, UniverattHamburg, Luruper Chaussee 149, 22761 Hamburg.

4To whom correspondence should be addressed at Institute of Physics and Technology, Mongolian
Academy of Sciences, Ulaanbaatar-51, Mongolia.

1929

0020-7748/01/1100-1929$19.50£02001 Plenum Publishing Corporation



1930 Namsrai and von Geramb

consequence is that differential equations become integro-differential equations.
In case of the Scladinger equation, the potential operator becomes an integral
operator.

If we use a relativistic relation between momentum and energy, classically

E=p2+m? (1)

as operator

i % — Jm—v2. ©
The square-root operator is not defined ispace, and a Fourier transformation
(FT) into ak-space representation is used in common practice.

The assumption of pointlike masses and charges also cause essential difficul-
ties, since pointlike is effectively represented only by a distribution, in particular,
by a Diracs function,

pm(X) =mé(x),  pe(x) = e5(x). 3)

This representation already yields the key paths for its handling in practice. In
Section 10 we summarize the salient features of distributions with important results
and relations, which shall be used throughout this text.

At this stage, the mathematical developments are rather complete, but their
practical application and the resulting physical interpretation are less well estab-
lished. In case of integral equations, proofs of convergence and efficient represen-
tations in terms of Fourier series are still popular topics in mathematical physics.
Among choices of relativistic form factors (Efimov, 1977, and Namsrai, 1986),
replacements like

1 K2(—p2¢?)
— — .
m>—p2—iec m?—p?—ic

(4)

are often used. In these notes we shall outline and discuss several such schemes
for problems associated with nonlocality in particle physics.

Already in the early developments of quantum mechanics occur square-root
operators. In particular, it was the relativistic relation between energy and mo-
mentum in a coordinate space representation that hindered its use (Weyl, 1927).
A review of the early and later works are contained in Smith (1993). Today, in
bound-state problems of two- and three-quark systems the Salpeter equation is
often used (Castoriret al., 1984; Friar and Tomusiak, 1984; Nickisetal., 1984).
Furthermore, problems associated with binding in very strong fields (Hardekopf
and Sucher, 1985; Papp, 1985), string theory (Fiziev, 1985; Kaku, 1988), and

5Units withc = 1 andh = 1 are used throughout.
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astrophysical black holes (Berezin, 1997a,b; Berezial., 1998) are application
areas. Green’s functions for differential equations of infinite order like

VM2 Z0D(x) = —59(x) )

are treated in Namsrai (1998). There exist essential differences to Green’s functions
of the second-order d’Alembert operator. This differences is the nonlocality that
describes self-interactions of particles. As a typical example consider the free cases

200 _ e 2y ®)

and

Vm2 — gg(x) = 0. (7)

A binomial expansion of the square root yields formally an integral equation

/ dy Ky (X — Y)p(y) =

with a kernel containing the Diratfunction

]

sz(x)=|: Z 52 n+l n+l:| (4)(X)

n=0
and

@)t o
n(n+ D1 .

To this point, the boundary conditions are not specified and the expansion has only
a formal meaning. The length parameter is introduced with the implication that
it links the Compton wavelength, = h/mc of a particle with its masa. The
expression suggests a nonlocal nature of particles whose properties are influenced
by a self-interaction without an external cause. The hitherto not specified boundary
conditions raise essential difficulties—some of which are discussed in detail with
their physical implications.

In Section 1 we consider scalar particles and construct Green functions and
solutions. Section 2 is devoted to another representation of the Green’s function
and emphasis is put on stochasticity of space and time connected with a particle
and plane wave solution. Quantization of nonlocal fields is the topic of Section 3.
Commutation relations, Pauli—Jordan functions, and properties of Green’s func-
tions for local field equations are recalled and compared with the nonlocal field
results. The static limitx® = 0) is studied in Section 4 in which the classical
Yukawa potential result is generalized for extended particles. Section 5 is devoted
to an infinite-order Sclodinger equation in momentum space. In Section 6, an

Co=(-1y
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exact solution of the one-dimensional Satiiiger equation and its asymptotic be-
havior is discussed. The discrete spectrum and properties of the ground-state wave
function are considered in Section 7. In Section 8, some applications to Higgs
fields are given. In Sections 9 and 10 we discuss some mathematical representa-
tions and basic concepts of generalized functions. In Sections 11, 12, and 13 we
study vacuum fluctuations, extra-dimensional methods in the potential theory, and
electromagneticinteractions of extended electrical charges and their consequences,
as physical applications of the square-root operator formalism. In Section 14 the
square-root nonlocal quantum electrodynamics is constructed. Section 15 deals
with concrete structures of extended charges and these are associated with non-
local potentials and photon propagators. We also discuss here the potential of the
torus and its nonlocal photon propagator as the appearance of superfields in terms
of the photon and the massless fermion (photino).

1. EQUATION OF MOTION FOR SCALAR PARTICLES
1.1. Square-Root Klein—-Gordon Equation

Let us consider the nonlocal field equation (7) and its Green function in
momentum representation

o 1 m ~ ~
(p) =~ = [ i oS00 P (8)
Jm2 —p2—ig -m
where the distribution
1 1
pm(3) = (M = 29)78 ©)

has properties like

/_m pm(A)da =1, f_m da Aom(r) = 0, /_m da A%pm(r) = %mz. (10)

m m m

And

. 1 x+p
MP) =5 11
S0P = T a1 (11)
is the Dirac spinor propagator with random mass momentum space. In expres-
sion (8) we have used the Dirac relatiod — p? = (m — p)(m + p), the relation

p = y'p,, and the Feynman parametric formula

1
[ax + b(1 — x)]M+n2

1 I(n+ny)
ampnz  T'(n)r(ny)

/l dx X1 — x)net (12)
0
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Inour casen; = n, = 1/2 andl'(1/2) = /7. The Green’s function (8) i space
takes the form

QX — y) = / A (S — 4 1), (13)
where
. _ 1 4 —ip(x—y) f)‘i‘)\,
SX—-y,A)= 20 /d pe'P yA2_4p2—is (14)

is the Dirac spinor propagator of the random mass
On the other hand, the propagator of the nonlocal fie(@) has the
representation

o(x) = / A ()Y (X, 2), (15)

wherey (x, A) is the Dirac spinor with random mags which can be obtained
from theT Product

Qc(x — y) = (0T {p(X)¢*(y)}|0)
:/, / di1 dAz om(A1)pm(A2) (O T {¥ (X, A1) ¥ (Y, 22)}I0). (16)

It is natural to assume that

(A1 = 22)S(Xx =y, A1)
/Om()tl)

whereS(x, A) is given by expression (14). Thus definition (16), with the covariance
property (17), yields relation (13). We derive from formulas (13)—(17) that the
square-root Klein—Gordon equation (7) describes an extended field (15) with the
propagator (13) and the finite mass distribution (9).

— )
(OIT{w (X, Aa) ¥ (Y, A2)}0) =

: 17)

1.2. Square-Root Double Klein—Gordon Equation

Next, we consider the square-root nonlocal equation
V(m? — O)(m? 4 D)¢(x) = O. (18)

This equation is invariant under the transformation> im. Itrelates a mathemat-
ical particle, a tachyon, and its dual physical particle partner. The Green function
in momentum space is

Bulp) = [ 0o (Ee(py V), (19
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where
1 ., 2\—1
pme(2) = — (M7 — 4572, (20)
The propagator of the scalar particle with random masss

Re(p )=t 1

ir—p2—ie
For Eq. (18), expressions (13), (15), and (17) take the following forms

Dl —y) = [ i pre8)Ac(x — y. V), @)
669 = [ 0 o), 0, @2)

and

De(x —y) = (0T {¢(X)9(¥)}|0)

m?  em?
=[] i ppom 02 OT oo, (110), (23
-m?2 J —m:
wherea, (x) is the scalar local field with masgx, satisfying
8(h — A2)Ac (X — Y, v/A1)
pmz(r1)

with properties as given in (17). In expressions (21) and (24), the scalar particle
propagator

(0T [03,(X)03,(V]10) = (24)

_ 1 1 4 iox 1
Ac(x, V) = (2n)4i_,/d pe'P PR (25)

is used.

2. STOCHASTICITY OF SPACE-TIME
2.1. Nonlocality and Fluctuation in Space—Time Points

Here we use another (but equivalent) representation for Green functions and
solutions as obtained in Section 1,

1
Qu(x — y) = / ISy, m)
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and (26)

1
De(x —y) = [1dk P(M)Ac(x =y, V),

wherea plays the role of a random parameter. Solutions (15) and (22) are rewritten
in the forms

1
o(x) = f k()i x, i)
and (27)
1
H(X) = [ ldk p()o (X, MV2).

It can be verified that expressions (26) and (27) can be interpreted in terms of
fluctuating space—time points

1
Qu(x — y) = / PRS- )

(28)
1
it~ y) = [ dhpr eVl — ),
-1
and
1 3
000 = [ droivon)
(29)
1
B(x) = f d p(R)rzo (xv/2).
-1
In expressions (26)—(29) we used the distribution
1 1
p)=—(1- oS (30)
The space-time points. andx~/A have the meaning
XA = Xoh, XA
(31)

XA = Xov/A, Xv/A.

In Egs. (28), the function§(1x) andA¢(x~/2) correspond to local propagators of
spinor fieldsy (x1) and a scalar particke(x~/1) in (29) with massn, respectively.
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In the given casel products or covariances (17) and (24) do not change
8(h1 — 22)S(Aa(x —Y))

(O[T {¥ (x22)¥ (YA2)}|0) =
p(A1)
(32)
OT o (/i) (/i) 10) = 22 Az)Az;ﬂﬂx—m

A physical interpretation of expressions (28) and (29) implies that nonlocal
operators induce fluctuations of particle space—time coordinates, with weight
v/ for spin 1/2 and 0 particles respectively. The distributigh), defined in (30),
does not depend on the spin statistics.

2.2. Plane Wave Solutions

The functionss (x+/A) and v (x1) in (29) satisfy the Klein—-Gordon and the
Dirac equations. Here we study nonlocal fields for these equations. With the usual
Dirac plane wave solution

_ Ll(k) 1 —ikxa _ 2 2
Yp(X2) = 736 o) e, ko= vm24Kk?, (33)
we represenp(x) in (29) in the form

(x) = u(k)
vp V2K° (27)}

Some calculations yield an expression in terms of confluent hypergeometric func-
tions like

/ dx p(V)r2 ek, (34)

uk) 1—iI'3(3) 517 (kx?
(/’p(x) J2ke 6 (2n )2{ F(Z'E'Z’_ 4 )
7 39 (kx)?\ 7272
#af(G3 0 s @) %)

The plane wave functions(x) in (29) for the case
op(XVi) = (27) 7 (2Kk°) "2 e kxV> (36)

encounter some difficulties due to the factdk in (36). To handle this problem,
we transform the functions like

1
¢p(x) = N / dr p(a)az €7 AV
-1
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into the form

1 .
dp(X) = 2N [ [ du Pp(u?)(iet + e"“‘)} (37)
0
with
N = (27)72(2k%)"2, A =kx.
Differentiation of (37) forA, followed by integration by parts yields

9 i 1 ,
o _ —NA[/ duv'1l—u4et + ie"A“)]
JIA g 0

With the expansion, whose details are found in Section 5,

M4+u2=1+= Z(_ )n (2n)|

ni(n+ 1)l 220

u2n+2

(38)
we get

0 = NI E Q)+ [ La(w) - Luc-i) |
Z (nl(ln)nJ(rzf))lI 22n[ (n + g g) /dA A
<1F2(n+2; +3;A72>+i1F2<n+g;%,n+3;—A72))
o(nend) fon-si(im(nead ne 1)

3 7 A2
+1Fz(n+2;§,n+§;—7>>]}+const., (39)

whereQ(A) = ilo(—iA) — Io(A) andB(x, y) = T(X)['(y)/ T (x + vy); L1(x) and
l,(x) are modified Struve and modified Bessel functions, respectively.

3. QUANTIZATION OF SQUARE-ROOT THEORY
3.1. Commutation Relations of Nonlocal Fields

The free fieldg(x) and¢(x), which obey Eqg. (7) and (18), become operator-
valued and contain positive and negative frequency pars= ¢*(X) + ¢~ (X)
andg(x) = ¢T(x) + ¢~ (x). In this section we investigate their commutation re-
lations and Green functions.

Representation (27) is convenient when we work with quantized figlxls
and¢(x). We consider here only scalar particles. First we notice that definitions
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(16) and (23) fofT -product operators, as well as properties (17) and (24), remain
valid. The usual product of quantized field§x) in (27), o (X, Mv/A) = o (X, 1)
combined with the stochastic average, or expectation value jof

1 1
(X)) = f 1 / ks i p(3)0(0) Expeda (x, 1a)o (v, 3a)l, (40

where

8(A1 — A2)a (X, A1)a (Y, A2)
p(r1)

has the form given in (24). The commutator of field operafrg takes the form

Expedo (X, A1)o (Y, A2)} = (41)

1900 601 = [ 11 / 11 dr1 s p(k)n(h2) EXPeCE (X, A1), o (Y, 4] (42)
Making use of (41) one gets
D(X— y) = D¥(x — y) + D~(x — y) = [$(X), p()]_
-/ 11 di (AKX — Y, 2), (43)

whereA(x — vy, A) is the Pauli-Jordan function of the scalar particle, with a mass
m+/A (Bogolubov and Shirkov, 1980), and

f 000)e(x0) I (my/ax), x =X —x2

A(x, A) = —€(X°) (x)— i
(44)

3.2. Green Functions of Nonlocal Operators
We use the Green function of the fiekx) in (26)

1
De(x — y) = / (Al — ¥, ). (45)

Here

B 1) = mr300) = g0 (mr) — Na(my )]
i

- Fe( 0Ka(My=7x). (46)

Retarded and advanced propagators for square-root scalar particle are defined as

DEV(x — y) = / o)A — y, )
-1
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and
1
D(x — y) = / dh p()A(x — y, 2. (47)
-1
Here

aav, re 1 [0} \/X
A(x) = A™Y(—x) = 2_71i9(_x ){S(X) - %G(X)Jl(m kx)}. (48)

Finally, definition of D*(x) in (43) is
DE(x) = /l dr p(M)AE(X, ). (49)
-1

Next, we study these functions in the light cone neighborhood to verify properties
of singularities. Using a decomposition of the cylindrical Bessel functions in (44),
(46), and (48) one finds

2
A(X, A) = Z—LS(XO)(S(X) — ZT?S(XO)O(X) + O(x),
2 2 %
Bl ) = o800 = 53 — 1000+ g g ™2 1x1"
+0(VIxIloglxl), (50)

2
A, 2) = 5 0600 — 5009000 + O0)
i 8ri

and

m2n  mJAlx|z  mZa
) ~ 16mi (x°)0(x)-

+ 1 [o]

AT ) = 4rri 00 £ 42y T 82 2 1
It is verified that singularities associated with the mass terms disappear after inte-
gration overn in (43), (45), (47), and (49). Remaining singularities are connected
with space—time properties only, and the removal of these singularities requires a
careful treatment of the space—time structure at short distances. This problem is
beyond the scope of this work.

3.3. Causality

One of the principle requirements of quantum field theory is the satisfaction
of causality (Bogolubov and Shirkov, 1980). Generally, there are two types of
causality conditions to consider.
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1. Microcausality is manifest as a requirement imposed on the Heisenberg
fieldso (x), which must be locally commutable

[0(x),o(y)]-=0
in a spacelike regior ~ y. As microcausality condition for th8 matrix
1) 8S
o () =0 o x =y

2. Macrocausality is equivalent to the requirement that “effective wave
packet”

am=/ﬁwKu—wdw

fall off rapidly when the functiow (x) describing the “initial wave packet”
falls off rapidly outside regiois,, (Efimov, 1977; Namsrai, 1986).

It is surprising that the theory, based upon the square-root Klein—Gordon
operator, has microcausal validity. This follows directly from the representa-
tion (43) with (44). The usual local Pauli-Jordan function (44) vanishes out-
side the light congr = x2 — x2 < 0 for any massn/A. As a consequence, all
(anti)commutators of the nonlocal field operators (27) tend to zero when their ar-
guments are separated by a spacelike interval, all in accordance with the formula
(43). Its physical consequence is that events are independent if they are separated
by spacelike intervals.

4. NEW POTENTIALS

Photon exchange generates the electromagnetic interaction whereas boson
exchanges are responsible for the strong short-range nuclear forces. In particular,
the Coulomb and Yukawa potentials are related to single photon and single pion
propagators in the static limit

e ipr 1 e
_ g ipr 1 _ g —mr
Uv(r) = (2n)3 /dpe‘ m2+p2  4xr € (52)

In analogy, if there exist forces due to exchange of nonlocal field particles, from
Egs. (7) and (18) follows

Us(r) = (i) /dpeipr; (53)
(2r)3 Jm2 4+ p?’
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A p(h i~ 4
Ualr) = )3/ N (54)
In the latter, we used representation (28Rnspace
1
1
D9 = [ dr3 p()ac(xV), (55
-1
where
|pr
BelxVE) = s [ e (56)
After some calculations, we find
1
Ui(r) = o2 g1Ka1(mr) (57)
and
Ua(r) =mgf(x), x=mr (58)
Here
f(x) = ! / r (e + cosxv/2) (59)
4r2x Jo J1—=22 '
Asymptotically, the behavior of (57) is given by
1 o
i) — 2722 m r—0 60
l(r)— 1 ie—mr C oo ( )
(27r)3 /M '
The function (59) has a series representatiox like
f00 = — (61)
T 8rxJm
where
< T 2n—1 1 2n—-1
Fl(x)zz (2n41+2) . 1
‘S r(®2+1) @2n-1)
and
00 (l+n) 2n
Fa(x) = +(=1)"
209 =2 gy @t ) Gy

Notice, the equivalent local potentibl(r) (58) is an oscillatory function and,
different from commonly used potentials, is periodically attractive and repulsive
(see Fig. 1).
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Fig. 1. Behavior of the potentidl,(c) = f(c), (c = mr).

5. SCHRODINGER EQUATION WITH NONLOCAL POTENTIAL

The usual Schadinger equation is an approximation with respectto a nonlocal
potential case

% =vm2 — V2y + Uy, (62)
whereU (r) is a local potential, like the point charge Coulomb potential

e
Equation (62), with generalized potentials, can be written with a series represen-

tation like
Vm2 — V2 =m+ \/—VZ/ e ™ X (Av-V?). (64)

Making use of the series

W-VZ2E (=1 A2v2\"
Ji(AvV —V2) = — ,
i ) 2 ;n!(nJrl)!( 4 >
we get an infinite order differential equation
oy CL'C! o0 2 g2yt
L —{°V
=T =m+U)y+ 2 Z a2 YY) (65)

wherel,, = h/mcis the Compton wavelength of the particle with mass
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It should be noted that the plane wayg ~ e 'EPX E = ,/m2 + p2 satis-
fies (62) withU = 0. For the stationary case

¥ =€ Fy(x), (66)
Eq. (65) assumes the form

(E—m—U)y(x) = / dy K, (X — Y)u/(¥). (67)
where
Ken (X —Y) = Kg, (—€3V?)8O(x — y)

is a generalized function. Here

o0

Ky, (—V22) = g 3 Ca(—v2e2)" (68)
n=0

with C, = (=1)"(2n)!12=2"/[n!(n + 1)!].
Fourier transformation of Eq. (67), with the potential (63), yields its form in
momentum space. In this representafioandX are

A . .0
PYp = Pvp, X¢p =1 a—p’ﬁp,

whereyr, is the wave function in momentum representation. The opefafois

not well defined. However, its ambiguity can be removed by adding suitable terms
to the potential that are proportional té &unction and its derivatives at the origin.
Similarly, we can multiply the equation by the operatdrom the left. Thus we

get @p = ¥(p))

\/(i %)2 (. %)2 o %)Z{NW —E]I®) = T() (69)

6. SCHRODINGER EQUATION ON THE LINE
In one dimension, Egs. (67) and (69) are simplified like

1 Oo —mi ! 2\ d?
(E_m_U)w(X)Z_E./o dre /_1dt(1_t )ZdX2

X [ (X + At) + ¥ (X — At)] (70)

and

ij—p{[¢m2+ 0 — E]i(p) = 27(p). (71)
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Let us investigate Eq. (71) in detail. Differentiation of (71) gives
d ~ , _
—logyr = [—|e2 — L}[,/mz + p?— E] ! (72)
dp m? + p?

Further, changing variable = msinht and carrying out integration, one gets

1 dt cosht dt sinht
logcy = .—ezf = —/ £ (73)
i cosht — — cosht — =
Herec is a integration constant and we distinguish the two cases as
i. E/fm<1
i. E/m> 1. (74)

Then, the first case gives

1oL, const (o (D R
wd(X)_«/T_n/oodpw(p)ep _m/mdpép<m+Q> Q—%
LE 1 (1-£Q
x{e(—p) exp|:—|e p~ — arc3|r<r%>}

_E
+6(p) exp|:i62§ ! = arcsir< 5 mg)i| : (75)
1-E -

where Q = /1 + p?/m2. After some transformations we obtain an equivalent
form

E&
lﬁd(x)—\/z0 Q- E e m+Q o E
,gé
—ipXx p e i(l_%Q)'i' r%i)’ ' 26
+€ (Q_E> o E . (76)

Herey = /1 — E2/m2. For the second case in (74) we have
const [® g€ [1-E+y'2Q-1)]
I/fc(x)= —/ dpépx(£+Q) E rg r?l !
Vor J oo m Q-sl1-5-v5QR-1
(77)

wherey’ = \/E2/m2 — 1 andn = —i(E/m)(€?/y’).
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The expressions (75) and (77) describe wave functions of discrete and con-
tinuous spectra. The saddle point method gives the asymptotic behaviors of the
solution (75) atx — +o0

~ constmYZE (B YT [ymx e
Yd(X) conste(mZ_Ez)%e (m+|y> {|:2le2y

=%

3im

<%

E
. mx Tm
+ |:2|—7/2i|

_m- 2_” =3 a-mxgiy—ie?
2 ]+cons< e|> me2x e ™)

E & E &
m my E Yy
X [ |:—I E(1 + y)] + [—I a(1+ y)] } (78)
for x - 400 and
a2 E&
m  V2tE (E .\ ][, mx ,]nY

E &
i MX 2 o _m 2_7[ -2 2(_iy-ie? gmx
+[2|e2y} ]+cons< E)me e(—i) "¢ ¢é
x{[—gﬂl+yﬂm

for x — —o0o. These asymptotic boundary conditions determine the physical wave
functions, i.e., they decrease rapidly at infinity.

+[—gu1+yﬂ_m (79)

~I%
[ —

7. DISCRETE SPECTRUM AND GROUND-STATE WAVE FUNCTION

The fundamental solution (75), with boundary conditions (78) and (79), shows
that wave function of the Scbdinger equation (70) is an analytic function only if

E &
m /1_5_2

They yield the discrete spectrum, or bound-state energies
m

J1+$'

=n, n=12,... (80)

E=— (81)
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For weak couplingé? is small), we obtain Bohr’s results for hydrogen-like atoms
(€ — Z€). With the nonlocal Scludinger equation, we determine the spectrum
from the analytic properties of the solutions. On the other hand, in the strong
coupling limit & — g2 > 1 the discrete energy spectrumBs= —mn/g? for
some fixedy < g wheren < ny.

The ground-state wave function, with= 1 in the nonlocal Sclodinger
equation solution, is

p2

_const [*® (D ¢y
i) =22 [ aper( 2+ Q) Cergr o @
where
_const [* (1-EQ) ‘px(B >‘€‘2

_e—ipx<_£ N Q>_iez], (83)

The integrals are evaluated by contour integration and Cauchy’s formula

E —ie?
V2ri const- E2e ™ ( — +iy N(x) +g(x) for x> 0;
Ya(x) "
1(X) = -
E —le
—+/27i const - E? e””‘1’<a — iy> N(X)+g(x) for x<O.

Hereg(x) is given by (83) andN(x) = (x — éez + %y). Finally, the free motion
wave functions €¢ = 0) and continuous spectrum for the nonlocal ®cmger
equation (70) is discussed. More details are given in Section 9.3. Standing wave
Coulomb solutions are

Yi(X) = —const - 2v/27m ESiT(kX (84)
and
_const , e /°° i x(p )iezﬁJrQ
. = -1 R d ép -
Ve(X) mm( ) oo P m+Q (p+K)
x (p— k)% [%e + my’Q] ; (85)

wherek = +/E2 — m2. We see that the wave function of the free motion is the
standing plane wave with the wave numberand the wave function of the
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continuous spectra has an essential singular branch pomt=ak. The infinite
degeneracy of all positive-energy levels is the result of the infinite order of the
nonlocal Schodinger equation.

8. HIGGS FIELDS

Today, a Higgs particle, even if it has not been verified experimentally, is
part of the standard model of electro-weak interactions and is supposed to explain
the mass of particles by a spontaneous symmetry-breaking mechanism. The direct
search at the LEP for the Higgs boson excludes Higgs masses b&l6w GeV
(European Physical Society [EPS], 2000; Janot, 1997). Unitarity of the scattering
amplitude requires a cutoff (Altarelli and Isidori, 1994), which imposes an up-
per bound on the Higgs mass. For the minimal value 1 TeV, the upper bound
on the Higgs massgy) is <700 GeV, forA ~Mgyr, which is~10'® GeV, the
Higgs mass has to be smaller thaB00 GeV (see also Namsrai, 1996a,b). In the
last years, minimal supersymmetric extensions of this problem were also exten-
sively discussed (Habeat al, 1997). We have already examined in some detail
implications of the nonlocality with the Klein—-Gordon equation. There, it turns
out that square-root operators have a physical meaning in terms of self interac-
tions and some exact solutions are known. Alternatively, the physics generated by
square-root operators may also be interpreted in terms of stochastic space-time
motion. Equations (7) and (18) describe spinor and scalar fields with random mass
distributions. In the massless case, Egs. (7) and (18) describe neutrinos and pho-
tons, and dipole potential&)§ ~ 1/r?) or Coulomb potentialsl. ~ 1/r) enter.
However, we notice that a representation of square-root operators, using nonlocal
generalized functioi,, (x) in (68), works only well for superheavy particles like
t quarks and Higgs patrticles, since in this case the pararheten/mcbecomes
small. While, for massive neutrinos, axions, and other very light supersymmetric
particles we must use the full square-root-operator forms (7) and (18). In another
remark, concerning applications of our scheme examined in Higgs fields, we pro-
pose that motion of Higgs particles and their interaction with other particles may
be given by the square-root Klein—Gordon-type equations (7), (18), or (67) with
potentials (57) and (58). Why Higgs particles do not show up experimentally may
have its reason in a random mass distribution

prn() = (%)(m“ _x)}

with the density

m? m? m? 1
dX pm(X) = 1, dx Xom(X) = 0, dx Xpm(x) = =m?.
2 m2 m2 2

—m —
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The energy of the Higgs patrticle is given by

bid m )

2" /m+ p2 '

where E(rr/2, X) in the integrand is the complete elliptic integral of the second
kind.

1
E=/‘mw@%m2+ma2=3¢ml+wE<
-1 b4

9. MATHEMATICAL TOOLS
9.1. Product of Nonlocal Field Operators and Green Functions

Equalities (17) and (24) allow us to get a more exact definition of nonlocal
field operator products, like

1 1
#09-00) = [ [ diadizp(ia)oha) Expecb(x, )a(y. o)l
1/
where, by definition,
Expecp (x, A1)a (Y, 22)] = o(X, A1) (Y, A22)8(k1 — 22)/p(R1).  (86)
Thus
1
d(x) - B(y) = /_1 dx p(A)a (X, Mo (Y, 1). (87)

Definitions (86) and (87) imply that(x, ) is a random distribution, like a
Gaussian with the variable representing its width, whose expectation value or
covariance is given by (86). In analogy, the commutator of field operators is defined
as

1
[¢(x), #(Y)]- = [ldk p(Mo (X, 1), a(y, )] (88)

Definitions (86), (87), and (88) can be generalized and used to form the product
of Green functions

1
D) Dely) = | dkp(R)Belx, DAy, 2. (89)
-1
The definition (89) also ensures gauge invariance (see Section 14 and Namsrai,

1998).

9.2. Field Theory on the Unit Circle

Matrix elements of theS matrix are defined as producE}i?éj D(xi — X;j),
where D(x) is the nonlocal propagators (26) or (28). For both scalar and spinor
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fields, nonlocal Green functions (28) can be defined in the complex plane on the
unit circle

w00= i, 5 ) (5[ (3) - s(57)] e

and
D _ 1 dz/Inz Inz A Inz A Inz
=5, 7 ()G )2z ) -2z |
(91)

Equations (90) and (91) imply a representation of all physical quantities on the
unit circle, in bothx or p spaces. An analogous representation exists for Green
functions (26).

9.3. Boundary Conditions for The Schiodinger Equation

Let us study the solution of the one-dimensional 8dintger equation (70)
(U = 0), which is given by (77) witle = 0:

const [ : 1
O B
2 —00 2
4 £+ 1+ 2

Integration of this expressions over the variaplencounters two polep; , =
++/E2 —m?Z = k. The choice of circumvention for these poles dictates by
boundary conditions. We distinguish four cases:

1. ys(x)=0 for x<0O
2. Yi(x)=0 for x>0
3. A particle moving to the lefty(x) ~ e %, x>0
4. A particle moving to the rights(x) ~ €%, x < 0.

(92)

Thus, the first and the second cases lead to the solutions
sinkx

Y11(X) = —const - 2+/2rmE K 0(x) (93)
and
ink
Var(X) = const- 2v/27m ESIT( X@(—x). (94)
While from the last two cases we get
Yi(x) = —const- /27 - imE[e "g(x) +ékXe(—x)]%. (95)

It seems that the appropriate boundary conditions at the positive or negative
semi axis have been written to ensure the Hamiltonian of the one-dimensional
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quantum system is a self-adjoint operator either on the positive or on the negative
semi axis, but not on the whole axis as in a usual quantum mechanical case.

10. GENERALIZED FUNCTIONS AND THE
KALLEN-LEHMANN REPRESENTATION

10.1. Basic Concept of Generalized Functions

Generalized functions enable to define as a density a material point or a point
charge. Here we give some basic definitions of test functions and generalized
functions or distributions. We shall explain their main differences in the cases of
local and nonlocal quantum field theories (for further reading see Bogokttaby
1975; Dautray and Lions, 1985; Gel‘fand and Shilov, 1964/1968; Messian, 1961;
Namsrai, 1986; Schwartz, 1950, 1951; Vladimirov, 1979). To describe the concept
of generalized functions let us define the density generated by a material point
with the massn = 1 and a uniform distribution within a sphere of radiusThe
centre is at the origin 0. The average dengit{x) is

) (4me3/3) if |X| < e
(X) = .
P 0 if |X|> e.
We are interested in the density distribution wher- +0, which defines
+ if x=0
s0)=1"" (96)
0 if x#£0

as limit of a sequence of densitigg(x) with

+00
IimO/ d3x p.(x) = / d3x 8(x) = 1.

oo

For a continuous functior (x),

Jim / d3x pe(x) F(x) = f(0). (97)

This formula denotes the weak limit of the sequence ligw, (x) as the functional
f (0), which is not the function itself. It assigns to each continuous fundtio)
the functional valuef (0). This limiting process is abbreviated by the improper
functions(x) for which [ d3x §(x) f (x) = f(0). In literature one finds other brief
notations like

(8, f)= f(0). (98)

We see thas(x) generates a point mass at the origin and

/d3x s(x)=(5,1)=1.
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Before defining the functionals we consider the spaces of test functions. It is
said that continuous functions are the test functions foréttienctional. This
point of view takes as its basis of the definition of any generalized functions as
a linear continuous functional onto sets of sufficiently well-defined so-called test
functions. In general, test functions set up linear normalized dpaicewhich the
commutative and associative addition is defined as

l.u+v=v+4u
2.u+(v+w)=(U+Vv)+w

And also
u+0=u, u+(-u)=0
for eachu, v, w € U and Oe U{. Moreover,
l-u=u, A(pu) = (Ap)u
and
(A + p)u = AU+ pu, AUu+V)=2ru+ v

for anyu, v € Y and some (real and complex) numbgrand u. The real func-
tion p(u) = |u|| defined or/ is called the norm if the following conditions are
fulfilled:

(i) for any numben., p(ru) = |A| p(u)
(i) p(u+v) < p(u) + p(v) (triangle inequality)
(iii) if p(u) = 0, thenu = 0.

From conditions (i) and (ii), it follows nonnegativity of the norm

0= p(u—u) < p(u) + p(=u) = 2p(u).

The functions satisfying only conditions (i) and (ii) are called the semi-norms. If the

norm p is given inl{, then one can define the distance between any two elements
u andv € U as p(u — v). We say that the sequenag (..., uUn, ...) converges

to the limitu if the distance betweem, andu tends to zero when — o0, i.e.,

if limn_ o p(un — u) = 0. Convergence defined in such a manner is sometimes

called the convergence over the norm or the strong convergence.

Linear spacd/{ in which the convergence is given by the nomfu) is
called the normalized space. Spd¢es called countably normalized (with the
norms{p, ()}, p1(u) < p2(u) < ... < ps(u) <...)ifthe convergence is defined
as lim,_, o ps(u, — u) = 0 for anyo, andu € /. For example, the Hilbert space
L,[a, b] of all complex functionsf (x) with norm

b
(f, f) = ||f||2=f dx F(x) (x)
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is linear normalized space. Other linear normalized space is the §ffac®]) of
continuous functions on the interval, [b] with the norm

P(U) = SUP[a,p UX)I-

We consider the spad&o, p, n) of complex functions oh real variablex =
X1, ..., Xn, having continuous partial derivatives up to the orgénclusively, and
decreasing faster thax|~* together with all derivatives at infinity. In other words,
for the functionau(x) from C(o, p, n) all the products of the type

x*DPu(x), la|l<p, 1Bl <o (99)

are bounded, where

aﬁl+“'+ﬂn
X“:Xflxgz---xg”, |Ol|=0(1+"'+01n, Dﬁzm (100)
(R n

The norm in the spaa&(o, p, n) is given by

Py (U) = maxl‘gl‘SpSug@Rn [x* DPu(x)|. (101)
The spaces of the type 6{o, p, n) play animportantrole in the theory of distribu-
tions. In particular, the spa&= S(R") = C(o0, oo, R") consists of all infinitely
smooth functions in tha-dimensional real spad@", which decrease rapidly any
polynomials of &% + x5 + - - - + x2)~Y/2 together with all partial derivatives at
IX]| = oo. We define the convergence by the countable system norms

pa(u) = pacr(u) = max\a\sasug(ERn|Xa DﬁU(X)|

|Bl=o
where o =1, 2,.... In general, all functions of the typ®(xy,..., X)) x
exp[-x?/aZ — ... — x2/a2] including Hermit—-Chebyshev functions may be used

as functions ofS spaces, wher®(- - -) is an arbitrary polynomial. Another space
D(G) of test functions consists of the set of infinitely smooth functions (i.e., func-
tions having continuous partial derivatives of all ordersjdih, tending to zero
outside of the regio®. For example, the function(x) defined by the equality

expfa?/(x? —a?)], for —a<x<a (a> 0);
Ua(X) =

0 for |x|>a
belongs to the spade(a).
Definition. A numerical function defined in linear spabfeis called functional.

The functionalF (u) is called linear, if for anyu, v € U, and for any numbes
andp

F(au+ Bv) = aF(u) + BF(V). (102)
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The functionalF (u) is continuous if the convergence of sequefiggl € U to

u € U follows the convergence of sequerfe@u,) to F (u). If there exists a positive
numberCg such as that for any € U, the inequality| F(u)| < Cep(u) holds.
The set of all linear functionals in normalized spdces linear space, we call
it the space conjugate @ and denote it by/’. In ¢/’ one can also define the
norm

p/(F) = Suq)(u)§1| F()l

We retain the term “generalized function” for the function8&lswhile the
functionalsD’ are called the distributions, Schartz (1950/1951), and Gel‘fand and
Shilov (1964,1968) calls them generalized functions of “tempered growth.”

Definition. Functions disappearing outside some finite region of space are
called finite functions. Closure of point sets, on which a continuous function
u(x) # 0, is called the support of this function. Some properties of generalized
functions are

1. Transformation of Arguments and Differentiation
Mutually synonymous transformation= ¢(x) [y1 = ¢1(X),...] or
x = ¢~ 1(y) of the spacé&k” onto itself leads to

(fle™ ') u(y) = /R d"x F*()u(e(x))1 I ()|

(=) o

for any distributionf . HereJ(p) is the Jacobian of the transformation. We
consider some examples for the generalized functions of a single variable
that may be defined as the derivative of usual integrable functions.

la. The derivative of the well-known discontinuous functitr) equals

3(x):
() [ o2

= u(0) = (8, u). (104)

and

1b. The functionald/dx) In |x| coincides with the principal value of/ &
in Cauchy’s sense:

(dlg)l(XI,u(X)) =P/:dx¥- (105)
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1c. We define the functioryk? as a derivative of the generalized function
—1/x:

(X—lz u(x)) = (% u/(x)) = /Owdxw. (106)

In general,

B (_1)n71 dn
~(n—=1)rdxn
In accordance with (103), (107), and the property

—n

In|x|, n=1,2,... (107)

In(x+i0) = yinloln(x +iy) =In|x| +i yinloarg(x +iy)

= In|x| +im6(—x),
we have
1 d . 1
X+i0:ﬁln(x+|0)_;—|n8(x), (108)
or in the general case
o (_l)n—l dan ) B ) (_1)n .
n __ I _ n n
(xxi0o)™" = (1) dx In(x £i0) = x :I:IJT(n — 1)!8 (x).
(109)
Using (103) and (109) one gets
dn
8" u) = (=1)"u(0), "= —5(x).
(6", 1) = (~1)"u(0) AR
. Fourier Transforms of Generalized Functions
Consider the spacB" with the metric
S =Gy =Xy + -+ XN — XY — - — XY (110)

and study the Fourier transform with respect to this bilinear form.

Definition. The Fourier transform of the generalized functib(x) is
defined as the linear functiondl(p) on the space of the Fourier images
of the test functionsi(x) by the formula

(f(p), G(p)) = (f(x), u(x)), (111

whered(p) is given by

{(p) = Fu(x) = (2r) "2 /Rnd”x dP*u(x), (112)
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which is also the test functioéi(p) € S. The inverse transformation of
(112) possesses the same properties,and therefore the Fourier trans-
form realizes an isomorphis@on S.

Theorem 1. The Fourier transform of the generalized functions defined
by the formula (111) is the isomorphism of spacer8o itself. We recall
that the isomorphism of the linear topological spdé¢eonto the same
spaceld, is called the mutually synonymous and mutually continuous
mapping ofi4; ontolt,, conserving linear operations.

We give here Fourier transformations of some generalized functions:

2a.
1 i 1 1
— -3 o= o2

Fo(t) = (27) /dte(t)e' i(27) 10
2b.

F5(n)(X) — (271)*% / d"x 6(“)(X)eip>< = (27'[)*%

Rl‘l

2c.

- X .
E <é—) — @) " [ dpePE — s0(x _ a)
(2]'[)2 RN

wheres™ = §(xy) - - - 8(Xy). O

3. Multiplication of the Generalized Function by a Smooth Function and
Their Convolution
The product of two generalized functions represents a difficult prob-
lem in the theory of the generalized functions since it is a nonlinear oper-
ation. For instance,

1 1 1
£0000) = 50 =0 (- )309 =504

Nevertheless, there exists a wide class of functions for which one can
define their products with the generalized functions fri§hn a natural
manner. It is said that the functiasn(x) is a multiplier in the spacé& of
test functions if fromu(x) € Sit follows thate(x)u(x) € S.

Definition. If ¢(x) is the multiplier, the product af(x) by a generalized
function f € S'is given by

(0 f, u(x)) = (f, 9" (x)u(x)) (113)

foranyu(x) € S. By defintion, the productis commutative, i.ef, = f .
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We now consider the operation of convolution that is widely used in
the theory of the generalized functions.
Definition. The convolution for two function$ (p) andg(p) is given by

(o) = [ daip-aa@= [ da t@ap-a).

(114)
Using the second equality in (114) the convolution of the generalized
function f with the test functioru(p) € Sis defined as

fxu(p) = (f(a), u(p—a)) Z/Rnd”q f(@u(p —q). (115)

. Division and Support of a Generalized Function

The division is inverse in operation to multiplication and leads to the
study of the equation

p(x)f =g, (116)

whereg € S and ¢(x) are the given multiplier functions, anfl is an
unknown generalized function. Wher(x) # 0 for anyx, Eqg. (116) is
solved elementarily. If the functiop(x) has zeros, the problem of division
becomes complicated. Consider here only the case of a single independent
variablex and assume thaft(x) in (116) has a discrete set of zeros of finite
order. Thusxf = g, solution of which has the formf(u) = Cu(0) +

(9, u(x)), whereu(x) anduy(x) € S(RY). While the general solution of
the homogeneous equatiariy = 0 is (fp, u) = Cu(0), i.e., fop = C§(X).
Further, by induction it is shown that the more general equatibh = g
always has a solution with respect foe S, wherege S andm is a
natural number. An arbitrary factor of this solution is produced by a general
solution of the homogeneous equatidhfy = 0, that is,

m—1

C,., S
fozz(:)ﬁ(s 09, 8" =5 8(x), (117)

whereC, are arbitrary constants. Furthermore, we discuss other questions
of interest, including the local properties of the generalized functions. As
opposed to the usual functions, which are given at each point of some
set, the generalized functions are determined as a whole as values of the
functional on the space of test functions. Generally speaking, they do
not have definite values at separate points of space. It is said that the
generalized function$ andg coincide in the region (or in the open set)

G if for any test functioru(x) with the support o1& the equality ¢, u) =

(g, u) holds. Thus, by definition the set of points on which the generalized
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function f turnsto zero is open. Complement of this set to the whole space
‘R" is called the support of the generalized function

Theorem 2. Let f be the generalized function located at the origin of
the coordinate systeffie., f(x) = 0 for x # 0). Then f(x) is expressed

by a finite linear combination df function and its derivative8’(x). This
assertion is valid for both cases of generalized functions of many variables
and of the distributions from ©R"), i.e., f € D'(R"),

f(x)= ) C,D*5(x), (118)

le|=N

where N is the order of, IC, are some constants, and*lis given by the
expression (100).

In scalar field theory, the causal Green functiag(x) and the Pauli—
Jordan functionA(x) = [¢(X), ¢(Y)]- are generalized functions of the
typed(x) ands(x)6(x). The generalized form of (118),

F(x) = i Cn(C1?)"s@(x), (119)
n=0

is called a nonlocal generalized function, properties of which are depen-

dent on the sequence of (Roughly speaking, in difference with (118),

the generalized functions (119) are located in some domain characterized

by the parameter |. The space of test functions for the generalized func-

tions (119) consists of the entire function&d, .. ., z,) € Z,, (¢ > 1) of

n complex variables;z= x; + iy;, satisfying the conditions:

1. Forany f(zi, ..., z,) € Z,, there exist such positive numbers CO>
and A > 0(j =i,...,n)that

n
[f(z1,...,2Z0)| < exp{ ZA,-|ZJ- |°‘}.

=1

2. Forany \, ..., Vn

/d4x1~~/d4xn|f(x1+iy1,...,xn+iyn)| < co.

On the spaceZ, one can define all nonlocal generalized functions of the
type of (119) for which the Fourier transforf( p?) is an entire analytical
functionin the complex3plane, with the order of growth < 5=

The generalized functions (119) are considered in Eflmov (197>7) and
Namsrai (1986). O
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10.2. The Kallen—Lehmann Representation

Spectral forms (8), (19), and (49) for the composed fi(d), described by
the square-root field equations, are similar to tladléii—Lehmann representation
for a complex scalar Heisenberg picture operat¢x), which may or not be an
elementary particle field. In their original works dHén, 1952; Lehmann, 1954),
they considered the vacuum expectation value of a product

(0[D(X)®*(y)[0) = Y _(0]®(x)In){n|D*(y)]0), (120)

n

where the sum runs over any complete set of states. Choosing these states as
eigenstates of the momentum four-vecfdr, translational invariance gives

(O]@(x)n) = exppn - X)(0|P(0)n)
and (121)
(n|@*(y)|0) = exp(=ipn - y){n|®*(0)|0).

Substituting (121) into (120) we can transform the sum into a spectral function
(for details, see Weinberg, 1995)

> " 8%p = pn)(01P(O)IN)[? = (27)°0(p°)o(— PP), (122)
with p(—p?) = 0 for p? > 0. With this definition, Eq. (120) reads as
OO = @) ° [ d*p [ du? explip - (x~y)]
0

x 0(p*)p(u?)3(p* + 1) (123)

or
0@ MI0 = [ A oA x-yd, (129
whereA , (x) is the familiar Pauli-Jordan function
Ar(x =y, u?)=(2m) f d*po(p)s(p® + 1?) explip - (x — y)I.  (125)
In just the same way, one can get
O ()2X0 = [ dFUAAY - XD (120

The causality requirement tells us that the commutatidfx], ®*(y)]- must
vanish for spacelike separation—y. The vacuum expectation value of the
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commutator is

(OI[D(x), D*(¥)]-10) = / duP(p(u?) AL (x =Y, 1?) = p(A)AL(Y = X, 4?)).
° (127
Thus, it is necessary that

p(u?) = p(u). (128)

Using Eqg. (128), the vacuum expectation of the time-ordered product (or the causal
Green function) is

OIT (S(x)®* (Y))I0) = —i fo T Ao DA —y, 13 (129)

where A¢(x, 1?) is the Feynman propagator for a scalar particle of mast
momentum space

D(p) =i f d“x expl-ip - (x — V)] (O T{®()D*(Y)}I0)
and therefore

D(p) = fo 2 0(2?) (130)

P2+ p?—ie’
One immediate consequence of this result and the positivitgf) is thatD(p)
cannot vanish foitp?| — oo faster than the propagatoy(p? + m? —ie). The
suggestion is made to include higher derivative terms in the Lagrangian, which
would make the propagator vanish faster thap?Ifor |p?| — oo, but the spec-
tral representation shows that this would necessarily entail a departure from the
positivity postulates of quantum mechanics.

A sum rule for the spectral function can be obtained if we use equal-time
commutation relations. Ifb(x) is a conventionally normalized canonical field
operator, then

[aq);’t(’ Y oy, t)] = —i83x—y). (131)
We know that
ALK = ) ooy = i85~ Y). (132)

So the spectral representation (127) and the commutation relations (131) together
tell us that

fo o) du? = 1. (133)
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This implies that for| p?| — oo, the momentum space propagator (130) of the
unrenormalized fields has the free-field asymptotic behavior

1

This assertion is valid for the fields described by the square-root differential oper-
ator considered above.

11. VACUUM FLUCTUATIONS

In this section, corrections to the Newton and Coulomb potentials due to vac-
uum fluctuations are discussed. We show that very weak Yukawa-type potentials
are present in addition to thg'il potentials whose strengths yield repulsion with
ranges inversely proportional to some mass of particles that cause the vacuum
fluctuations.

Recently, several theoretical proposals have been put forward in which a
treatment of the hierarchy problem in the gravity sector was changed from the
extremely small Planck scale to a TeV scale (Antoniadial., 1998a,b). Con-
jectures of the cosmology and phenomenology of this model are already known
(Kim, 2000). Randall and Sundrum (1999a,b) proposed different models in which
the background metric is curved along the extra dimension due to the negative bulk
cosmological constant. One of the consequences of these approaches is that the
Newton potential (law) is changed as a function of the numbers of extra dimen-
sions. In general, deviations for thgriNewton potential, for a unit test mass are
parameterized by two parameters (Kehagias and Sfetsos, 2000et.ahd 999)

r

Vi) = - M1 e ), (134)

r
whereG is the usual Newton gravitational constant. Such potential corrections
are short-ranged, thus>> A with values fori conjectured as large asl mm.

The value ofx depends strongly on the particular model. With a supersymmetry-
breaking mechanism anof ~0.6 is found (Antoniadigt al, 1998a,b), whereas

a dilaton model predicts am of ~45 (Antoniadiset al, 1998a,b, Taylor and
Veneziano, 1998). Other authors (Kehagias and Sfetsos, 2000) studied alterna-
tive models of compactification mechanism for internal dimensions in the lowest
Kaluza—Klein state, witkr equal to its degeneracy. This gives foradimensional
toruse = 4,6,---,14whenn =2, 3,...,7.

In this section, we show that vacuum fluctuation effects can lead to similar
changes of Newton’s gravitational potential on equal footing corrections for the
Coulomb potential. Vacuum fluctuations are a result of the quantum-mechanical
mechanism of interacting massive particles with the vacuum. They imply that the
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particle at times gains or loses part of its total energy

1
E, — E, £ E; for the propagator P~ - e (135)
To maintain energy the fluctuations cancel in time, thus
1 1
Ep + Ef— Ef = Ep or (136)

M2+ p2+p2— 2 me+4 p2
However, a gain or loss of energy is possibly fractionated, like

Ep= B VE = /Es+ E}—El.\JE,+ EZ—E?  (137)

or
1 1 1

m? 4+ p? - Jm2 + p? \/m?2 1 p2
1 1

VP P2 o aF = giF e 2 4 3

(138)

El(ui) are portions of vacuum energy expressed in terms of masses. Next, we
show that these zero—zero effects yield changes of the Newton and Coulomb laws
at short distances. In the language of the graviton (photon) propagator, the Newton
(and the Coulomb) potential is given by, in static limit,

MGy 3 i L GnM
V = — pr_— = - 1
N =~y f D (139)
and
_ e 3, ipr 1 _ e
Ve(r) = i( E /d pe _p2 = i—4m, (140)

whereGy /4n = G. Fordefiniteness, we consider the Newton potential case. Omit-
ting the tensor structure the graviton propagator can be decomposed

1 1 1 1 141

p2—i8_|:m2+p2—i8:|+|:p2—i8 m2+p2—i8] (141)
Gravitational effects in TeV’'s energy region are correspondingly a sum of two
terms, ahigh-energyand alow-energyterm. The high-energy term is calculated
by using the first term in the graviton propagator (141) in Feynman diagrams for
gravitational processes. The low-energy term is calculated using the second term
in Eq. (141). This procedure of separating the propagator into two terms (141)
is in analogy with QED, where bound states are studied in external fields using
relativistic calculations (Weinberg, 1995). One advantage of this procedure is that
we shall also be able to calculate deviations from threNlewton potentional due to
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guantum-gravitational vacuum fluctuations in very—high-energy domain. In terms
of (141) the Newton potential can be rewritten in the form of a sum of two terms

Gy~ M (T 1 1
@) /dspe i ”?_p2+m2]+[p2+m2“' (142)

To take into account gravitational vacuum fluctuational effects due to the presence
of massive elementary particles in high energy processes we can write the high
energy term in Eq. (141) in the following formal form

W(r) =—

1 _ 1 _ 1 1
PP+m?—ie M2+ p?—pul+pul—is p2+u2—ie[1+ #}
(143)
wheres = m? — ;12 and we have used the identity (136). Furthermore, we as-
sume that the mass shift in (143) is small and obtain the series in the pardmeter

Deviation from the Newton potential is given by Egs. (142), (143), and (136)

MGy Sr 8 r
VP =——l1—e™ e |1+ = —(L+pur
D) 47”{ + [ on tgedten
1 r
— 53— (B43ur +ur)+--- |§. 144
s aur iy |} (144)

Assumingu = m — g, whereg is a small parameter of the theory, one can calculate
the seriesinthe brackets of Eq. (144) up to any desired ordéribfurns out that all
terms proportional to any order of the paramétare mutually cancelled. We verify
this identity up taO(e®) orders. It means that the momentary aspect of gain and loss
of energy from vacuum by a particle given by the expression (136) does not work.
Let us now consider two particle correlation-like potentials defined by the
formula (138) in graviton-induced propagation processes. In this case, one can
write Eq. (143) in the form

1 B 1 ; 1 ;
pP2+m?—ie | p2+m’—ic pZ+m2—ic
~ 1 1
\/Mi-l- pz—is\/ug—i—pz—is

1 b 3 52
2/,Ll+p_|8 S[M%+p2_|8]
1 b 3 52
x[l—— o+ 2__ 2—.-.] (145)
2/,L2+p—|8 8[M%+p2_|8]
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wheres; = m? — 2 ands, = m? — u3. Thus, the expression (144) takes the form

MGn

V'\(IZ)(r) - 4mr

1 1
{1 —e M4+ - / do o Y31 — o) V2e
0

ir 1r
X |:1 - E;(aal + (1 — a)d2) + éﬁ(l—}- pr)[az(?f +(1- a)25§

1
+ 20(1 — @)8182] — 65 —5(3 + 3pr +r12p?) [alaza(l a)?

+ 828,021 — o) + %(52053 +83(1— a)3)ﬂ } (146)

wherep = /3 + a(u? — u3).

After some calculations, assumiag= M% - /L% is small, one gets

MG 7
r

V= -M8f T

4
%e‘mr[m“r4 +6m3 3+ 15m%r? + lSmr]},
(247)

wherem = /(12 + u3)/2.

We see that multistage or correlated aspect of gain and loss of energy from
vacuum to vacuum by the particle gives rise to the change in the Newton potential,
where the sign of correction due to vacuum fluctuation is negative with respect
to extra-dimensional contributions in (134). It should be noted that unobservable
parameterg.? in Eq. (147) must be excluded from our consideration by using
integration or summation, depending on whether continuum or discrete spectrum
of energy was gained from vacuum by the particle. Thus, for the continuum spectra
of energy, the averaged functiefiin (147) per mass takes the form

4
76 = =2 [aua(1- 1) ot

211
=2°md. f dx(1—x¥)*=m?. —/——,
0 9.7-5
where we have assumed that mass validsr one-stage-gain energy must belong
to the interval 0< i < m(i = 1, 2) and by definitionu? — u3 = 2(m? — p3).
Experimental measurable quantity for the Newton potential (147) acquires the form

MG 1 1
(2) _ _ .=
(VN (I’))— {1 45 26

(148)

-e™m*r 4 + 6m3r 3 + 15m?r? + 15mr] }
(149)

We now discuss another possibility for the taking away (or extract) of zero—zero
effect from vacuum: the square-root form of gain or loss of vacuum energy in (137),
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because this effect leads to nonlinear processes. Indeed, from previous sections we
know that the square-root Klein—Gordon equation (7) and its Green function equa-
tion (5) have the solutions (15) and (8) [or (13)] with the distribution (9) obeying
properties (10). For the square-root propagator (8) expression (142) reads

W(r) =—

o | o (5 er;—+pz> * (m\/mi—-i-pzﬂ

(150)

Now making use of the formula (137) and decomposing square-root propagator
by a rule like (143) and (145) one gets

MGn
T

+%82(L> Kl(ur)—4—188 < ) Kz(ﬂr)+"']}v (151)

where § = m? — ;12) and

V) = St 1= Ziatmn + 22 g - 5 (5 ) kotun)

MGN 2
Irr {l——K (ml’)—i—mm/ doo™ s (1 a)” 4~

2
« [Kl(pr) - %%Ko(pr)[aal L)+ %(%) Ka(or)

Vid(r) =

3
x (2?67 + (1 — )?85 + 20(1 — &)5167) — 116<L) Ko(or)

X [513505(1 —a)? + 82850%(1 — a) + %(a%f +83(1 - a)a) + - i|]}
(152)

instead of (144) and (146), respectively. Héte= m? — ;2 ands? = m? — 3.
After some elementary calculations we have

GN 2 [e &2 1 &1
V(3) - _ 1— )/ —e M| = 1 — 14+ — 153
N (1) r { amrt [Zm + Zm( + 4m)< + 2m>“ (153)

and
GN 2 &2 3
4) _ _ —mr 2
W) = r {1 amre (48m3< 4m>)}’ (154)

wherem — u = ¢; andep = Mf - M% as before. Making use of the following
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averaged functions

1 m
Faler) = (ea)u = —/ du(m —p) = =

1
Faler) = (£2), / du(m— ) = 5,
3 1 3
Fiey = 168), = = [ dutm— 0 = Gm
and
2 m 15 ? 4 2
)= | dﬂz(l—ﬁ) = Zot,
one gets
GN 2 1 /59
(3) _ =2 _ —mr
vPm) == {1 ——e 48< +1er)} (155)
and
GN 2 1
v _ — g, —
(W)= - {1 e 90(4mr+3)]. (156)

We now consider other ways to take into account gravitational vacuum fluc-
tuational effects due to self-interaction of massive elementary particles in high-
energy processes, induced by the graviton propagation. Without loss of generality
we choose the interaction Lagrangian

A
Lin() =3, - P> (x): (157)
Then one-loop vacuum fluctuation is given by

(=i)?
2!

= —AZ/d4y dx D(x —y) = -V .)F/d“x D3(x),

whereD(x) is the causal Green function of a scalar parti®ds the volume of
four-dimensional space. At infinite volume limit it takes the form

F =

0|T{ f dx dy © Lin(X) = Lin(y) : }|0
(158)

F = —(27)%2“(0)DZ(0). (159)

Here D¢(p) is the Fourier transform ob¢(x). We would like to study vacuum
fluctuation induced by the self-interaction in the finite volume limit. By definition
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vacuum fluctuation, in this case, is given by

Fi= a2 [ D09 =2 fim_[d*pGu(MBi. (160
whereGy (p) is a smeared-out delta function
Jim Gy(p) = 69(p).
Let us consider the simple regularization function

2N?2 1

Gv(p) =
whereN? = 1/4/V. This smooth function obeys the Diradunction properties
Jim_ [ d*pGu(p) =1

and
Jm_ [ d*pu(pf(p) = 10)

for some regular functionf (p) at the origin. To calculate the deviation of
Newton potential by the formula (142) due to vacuum fluctuation induced by
self-interaction of particles, one can rewrite the second term in (142) in the form

1 1 AX? 1

m2+ p2—ie = m2+ p2—ie - [p2+N2_i8]3[p2+m2—ig]3' (162)

whereA = 2m°®N2/72, by using expressions (160) and (161). Contribution to the
Newton potential due to the last term in (162) is given by

M -Gy 3 ior AN? 1
Vi(r) = @n)? /d peP |:[p2+ NEER [p2+m2]3]

CMG [ A VR 1V (3 N
= dnr {2ﬁN9r/ﬁ w5 (ﬁ _E> (E_ﬁ)e v

105N 45 10 1
x | 1054+ ——rB + —N?r?p%2 + —N3%38% + _N%* 4} (163
o5+ 50+ N4 N s s

After some calculations we have

r

M-G r2
Vi(r) = — 47”“‘{—241\%@5\”2}. (164)
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Thus, expression (142) reads
MG 2
V() = _7{1— 24A)\2#e”z}. (165)

We again obtain repulsion corrections to the Newton potential.

Itis worth notice that vacuum fluctuation phenomena due to quantum gravita-
tional interactions are very complicated nonlinear processes, like neutron-induced
chain reactions in atomic nuclear and ultra—high-energy cosmic-rays-induced
avalanche-type processes in the earth’s atmosphere. From the physical point of
view the repulsion character of the potential contributions (149), (155), (156), and
(165) due to vacuum fluctuations is of interest in the avoidance (removal) of naked
singularities in quantum gravity where all matter do not attach at a single point
because of the repulsion potential at short distances, which gives rise to a negative
pressure of vacuum. It seems that repulsion additional contribution to the Newton
potential due to vacuum fluctuations does not depend on a concrete choice of the
form of regularized functions (161). Let us write another form of the function (161)

(2 6N* 2 21-4
(§7(p) = —5 (0% + N7 (166)

satisfyings-function properties foN — 0. For this smooth function, expression
(165) acquires the form

6 MG 269 r4
V() = —7{1— yz\(?)f Al } (167)
where A®@ = 6m® . N*/72. We obtain again regular, negative correction to the
Newton potential. The aforementioned circumstance distinguishes potential con-
tributions (149), (155), (156), (165), and (167) from the potential (134) obtained
using extra-dimensional methods, where extra-dimensional contributions to the
Newton potential are positive. Typical Compton length of elementary particles
is the proton one. = h/myc ~ 1071* cm, and therefore all obtained corrections
(149), (155), and (156) may give measurable effects only in subnuclear distances,
while contributions (165) and (167) are divergent-a¢? at the limitV — oo.

This fact tells us that corrections due to vacuum fluctuations are not correlated
with respect to extra-dimensional contributions like (134) at least far5.

12. EXTRA-DIMENSIONAL METHOD IN THE POTENTIAL THEORY

High-dimensional method entered in the nuclear and particle theories from
the early stages of development, when Kaluza (1921) and Klein (1926) attempted
to unify Einstein’s theory of gravitation with Maxwell’'s electromagnetism by in-
troducing one additional extra-fifth-dimension of space and its compactification
with respect to the usual four-dimensional space—time. Recently, this approach
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has received much attention in connection with the developments in string theory
and in the solution of the hierarchy problem in high-energy physics. In this sec-
tion, we use this method to study potentials created by different extended objects
like a charged ring, disk, etc. Before calculating potentials of extended charges
we present some mathematical tricks. The voluma-dimensional momentum
space is given by

d"p=p"tdpdQ,, dQ,=si"26, 1d6, 1 si" >0, 2d6n - --dbs,

(168)
with 0 < 6; < mr, except O< 61 < 27. Using the integral formula
m r(im+1
/ do sin™g = \/EM
one gets
Qn = /dQn =2 (169)
r(3)
Let us consider the propagator of the scalar particle
1
D = .
/‘(p) [m2+ pz_ is]““
In the static limit it leads to
Du(p) = (170)

[mz + p2]1+u !

wherep? = p? + - -- + p? andu is some parameter of the theory; in particular,

u = 0 corresponds to the usual Klein—Gordon propagator, while the square-root
propagator is the cage = —1/2. Assumingm = 0 one can obtain photon and
graviton propagators in the static limit. Generalizedimensional Yukawa-type
potential is given by

e—ipr

1 n
Un() = Gy [ Pime & pa

Q _ o0 e X
= #fo dp pi“—l-/o d6n_1SiN"26,_, e 1Preoh1 - (171)

Furthermore, using the integrals (Gradshteyn and Ryzhik, 1980)

25T("2 + )T (G)

(pr)?

T .
/o d6h_1 Sin"26,_, e71P" o1 — Tn2(pr)
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and

=A(Mr)= —Knz_ (mr), (172)

[ , Top(pr) m?s
o 0 e A 2T+ 7

one gets

Un(r) = . A(mr), (173)

whereA(mr) is given by Eq. (172) and

Zn%(n—l)
Q= ——.
" r(in-1)
Inequality
-2
1< N2, 8 (174)

2
is necessary to converge integrals in (172) and (173). Thus, we see that the Klein—
Gordon cas@ = Ois sufficient fom = 3, 4 spatial spaces. Beginning fram= 5
(space—time is six-dimensional) Klein—Gordon propagator does not work.

Finally, we obtain the&-dimensional potential corresponding to the propaga-
tor (170) in the form

n-2

Ll M ke (mn) (175)
n 2 n—-2_ 1
AT

whereK,(x) is the MacDonald function. Let us consider the following cases:

Un(r) =

1. n =3, i.e., space-time dimension is 4 gnd= 0. Since
b4
K1 = [—e %
?(Z) V 2z

1
uy(@r) = Ee—m@ (176)

is just the Yakawa potential, wherg= /x2 + y2 + 22 =r.
2. n =4, i.e., space-time dimension is 5 gmd= 0. In this case, we have

therefore

m
U, (r) = dn?r, Ki(mrs) (a77)

Herery = /r2 + x2.

3. n=3andu = —1/2. Thisis the square-root propagator case, which gives
m

27'[2r3

USR(r) = K1(mr) (178)
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4. For the cases = 5 andn = 6, the potentials acquire the forms

ré‘_%m%“
Us(rg) = —2—— Ks_ (mn 179
5('s) 202 Tt ) 3, (Mrs) (179)
and
2—pp h—2
Us(fe) = oo 16K, ,(mre) (180)

@r¥2iT(1+p) 2"
respectively. Hergs = ,/r2 + xZ 4+ x2 andre = ,/rZ + x3. We see that
there are more singular potentials compared to the three-dimensional case.

The generalized form of the Coulomb potential is given by the limit> 0.
For example,

1
Cry= — C(SR).y _ con 1
Us() = U7 =555 U= pmeery (181)
and so on. We observe the following rule:
o0
1
U?T(r) = / da U4(mm) — g
% 4grr
and
c 0 c 1
Us(r) = daUSo) = — 182
0 »/—oo 7 4rr (182)

Here we have used the integral

< da _ I3
/o mKl(m\/r2+/\2)—mK%(mf)-

Analogously, two or three steps of lowering dimensions of space give more smooth
potentials. For instance,

f 2 2 méiﬂ
U3 = [dAi; {dioUs(m r2+ )“l + )‘2 = 3 1 Kl—ﬂ(mr)
v @oi2r @t prie

and

UE() = / i / i, / dis Ug (mm)

2y/2mt 1 ()
(2m)20(L+ p)2ur i

We see that these two ways of lowering dimensions by means of integration over
infinite domains coincide with each other.

K%_M(mr). (183)
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Now let us consider the compactification of space dimension into finite re-
gions. Here we present different cases:

1. Letx andy be located in a disk with radiuR. Then after reduction
(compactification) of space dimension on this disk, we obtain its electric
static potential on the symmetric axis, i.eaxis by assumingn = O:

1 21 R
ué() de /0 i ©

TR Jo 72 + )2
— Z:Rz [VR+ 2 7], (184)

wheree/w R? is the density of charge.
2. Analogously, the potential of a charged stick with leng®i@cated along

thez axis is given by
e e | 1441+ %22

1 R
USC(I'z) = —/ da = n ,
2RI gn rznz 8RO 148
wherer, = /X2 + y2.

3. Finally, we can write the potential generated by a charged ring with radius
R, located on thez = 0)-plane. The result reads

(185)

Re e

1 2w
UL(2) = —/ de = )
2rR Jo AR+ 722  AnJ/R2+ 22

We see that reduction of the space dimension is useful in getting potentials of
different expended charges. These formal procedures can be applied to some
other type of potential theory, for example, the two-dimensional reduction of the
Yakawa potential Y (r) = (g/4mr) exp (—mr), whereg is some coupling con-
stant, given by

(186)

v 1 o R g VXZ2
U; (x) = d(p/o da - )»4”—6_'“ X4

mR2 Jo NS
= ng e ™ —e R, (187)
7T

This formal potential form is finite at the origix = 0. It should be noted that
confinement-type potentials are also obtained by using compactification method
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for extra-dimensional formalism. One example is

1
us(r) = m/dklfdkz Us (mm>

1 252
@) T+ ) (u — 3) R

Parameter® andu are defined by the experimental data on QCD measurements.

[(r2+ RY)“—2 — (r2)“~2]. (188)

13. ELECTROMAGNETIC INTERACTIONS
OF EXTENDED CHARGES

In this section, we study electromagnetic interactions of the charged ring
and dipole. Simple quantum electrodynamical calculation gives restriétign
10-1° cm on the radius of the ring. Let us consider two typical extended objects:
a ring charge (closed string) and a dipole (rigid string). In accordance with the
previous section, potentials are given by

e 1

() =7—- (189)
7eo Je2 +r2cog 6
and
¢ ed cosf ( d)
)~ —m—— == ). 190
#d(r) A eg(r2 + ¢3) 272 (190)
An explicit form of the latter is
, e \/r2+£§+rd cos9—\/r2+€§—rd cosé
@q(r) = : . (191)

4o \/(r2+£§)2+r2d2 cog 6

wheref; andd are the radius of the ring charge and a length of the dipole consisting
of two opposite electric charges. An angleharacterizes orientation of the ring

and the dipole in space. The orientation is notimportant in our scheme. We assume
that the ring (or the dipole) is not made of plastic or some other insulator, so that
the charge and the dipole can be regarded as unfixed in place, i.e., oriefitation
of the plane of the ring (or the dipole) along its central axis is a random number
belonging to the interval1/2n < 6 < 1/2x with a probability distributiorw(0)

/2 /2 /2
/ do w() = 1, / do - 6w(9) = 0, f dé - 62w(6) = const
—n/2 —7/2 —/2
(192)
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Thus, averaged potentials for a simple fomr(d) = %cose read

el r
UAr) = (¢f(r)), = =— = arcsin—— (193)
r e 2ntr NGRS
and
p ¢ ed 1
= = —— 194

where we have assumegl= 1. Formulas (193) and (194) are classical roots of
the theory. Poisson equations for (193) and (194) take the form

AUE(r) = —eof(r), i=r,d, (195)
where
¢ _
pl(r) = n_lz(r2+z§) 2 (196)
and
d 6 8r?
4
Pi(r) = —{ - } (197)
T ael 2402?24 42)°

satisfying the conditions:

/d?’r pof(r)=1 and fd3r pir) =0 (198)

as should be. Solutions of (195) have the standard integral forms

e fr—r’

ULr) = —/d%/u, (i =r,d). (199)
4 [r’]

The formal four-dimensional Euclidean extension of formulas (195)—(199) is use-

ful for studying the relativistic covariant theory of extended fields. In this case,

Egs. (195) lead to the same form

OeU;E(Xe) = —eo{e(Xe), (200)
with
3¢ =5
Preet) = g 5 (8 +63) (201)
and
3L 4 5r2 zd
Piele) = 1g T e } (-7%) e
(rg+6)°  (é+6)°
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obeying the normalization conditions
/ d*ep (xe) =1 and / d*xepie (xg) = 0. (203)

Herexe = (X, Xa), 12 = r2 +r2, O = 3%/0xE - 9xE. In this case, solutions (199)
acquire the form

s Pie(Xe — Ye)
22 | Ve
45 YE

Ulexe) = (i =r,d). (204)
The nonlocal photon propagator corresponding to the potential (193) in the
static limit takes the form, for the Euclidean metric,

~ 1 . 1
Ble(PE) = 5 [ d've expEiPeyEIUE(ye) = o5 xR —61y/p2 | (208
E

or for the pseudo-Euclideanspace
1 1
2r)4i

in accordance with the general corresponding rule where same relations exist
between propagators of the photons (massive scalar particles) and the Coulomb
(Yukawa) potential.

Having the basic formulas (205) and (206) in the Pseudo-Euclidean metric we
can easily study nonlocal quantum field theory of the ring in accordance with the
Efimov method (Efimov, 1977, 1985; Namsrai, 1986). Let us consider the nonlocal
interaction of the ring charge theory. The interaction Lagrangian has the form

D(x) =

[ d“p explipx)Bia(p). (P2=p2+ pl) (206)

Lian(¥) = %e/ d4Y1/d4Y2 Ke(yD)Ke(y2) (X — y1 — y2)
Xy (X = y1 = V)AL (x —y1) + AS(x —y2)]  (207)
or the differential form
Lin(x) = e ¥ ()7, ¥ () A, (x). (208)

The latter means that only the photon carries nonlocality in the ring theory. Here
K¢(x) is the nonlocal distribution given by

Ke(x) = Ke(0£2)8®(x) (209)

and

K, (Ot = exp[—%eh/—_m}, (210)
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and
%mszwmu—w%m (211)

is the nonlocal photon field due to the ring charge, with the propagator
Dy, (x = y) = (OIT[A}(x)A()]10)

= [d4y1/d4y2~ Ke(X — y1)Ke(y — ¥2)
x (0] T{ A2 (y1) Ad(y2)}10)

—Ouv o [Ke(K263)2 —ik(x—y)
= k y 212

(2n)4i/d T —ie © ! (212)
where [K,(k2¢2)] = exp[-3¢1+v/—k?] in accordance with (205), antd (x) is the
local photon field. The nonlocal distributidd,(x) in (211) coincides with the
charge density (201)

A 7
<t =ri(x )= g7 -x) . be=x-0) e

in sense of the generalized function. It is obvious that function (213) satisfies
8-function properties at the limit; — 0.

From expressions (209)—(211) we can see that we arrive at the square-root
differential operator of the typg/—0. This is the typical mathematical structure
of a square-root theory, the definition of which is given in the previous sections.
The form (208) of the interaction Lagrangian grants the gauge invariance of the
ring theory with respect to the nonlocal gauge group

A (X) = AL(X) + 3, f(x),

wm:wumum/&wwu—wuﬂ,

ﬂm=>QMemPe/dw-mu—yﬁwﬂ.

By knowing (208) theS matrix can be written in the form of thE products

A—00,6—0

S= lim T’ exp{iefd“x J(x)A‘(x)w(x)}, (214)

where the symbol} means the so-called Wick production orT* operation
used in the local theory, and the upper and lower @aseds correspond to some
intermediate regularization procedures defined in Efimov (1977), which make the
theory finite in all the matrix elements of ttf®matrix. The limitsA — oo and
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8 — 0 mean a removal of regularizations. To study the perturbation series for the
S matrix (214) by prescription of the usual local theory, it is necessary to change
the photon propagator (in the Feynman diagrams)

Ap(X—Yy) = Dy, (X —y) = =g D (x —y)
in accordance with (212) and to keep the usual local fermion propagator

1 4y 1 —ip(x—y)
(2n)4i/d p m—f)—iee . (215)
Calculation of the matrix elements of tf&matrix (214) will be carried out by
standard method. Here we write down some corrections to the quantum electro-
dynamical quantities.

At present, experimental values (Catal., 1998) of the anomalous magnetic
moment of the electron and the muon are

Ap® = 1001159652193 1 x 10711

exp

and (216)
Apd) = 1.001165923+ 84 x 107°

exp

and are fully described by the local QED (Kinoshita, 1988; Kinosttita., 1984;
Schwinberget al, 1981). For example, theoretical calculation f(theor)=

[(9 — 2)/2]w is given by
ac(theor)= al(theor)+ a2(theor) (217)

S(x — y) = (O T[Y ()¢ (N]I0) =

The first term is due to pure electromagnetic local interaction, which is defined as
(Schwinberget al., 1981)

al(theor)= (1159652411 166)102
4

_ % - 0.32847845§%)2 + Cg(%)s + 04(%) ,
where
Cs = 1.1765+ 0.0013, C;=—0.8+25, o = 137035963+ 15x 10°°
so that
al(theor)= 0.00115965245% 127 x 107124 17 x 1071% + 73 x 1012, (218)

Term £127 x 102 is due to the fine-structure constant’s error, and other two
errors are responsible for coefficier@g and C,4 respectively. The second term

in (217) denotes contributions of QED breakdown effects, including the size of
the electron and hadronic a@f-boson exchange corrections (Aettal., 1994;
DeRafael, 1994; Einhorn, 1994; Fodd al, 1983; Rodriguest al, 1993). In
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particular, in our case

a(theor)= aS' = —% . %mﬁl. (219)

The correction of the linear order ofi¢; in (219) differs essentially from the
nonlocal theory (Efimov, 1977; Namsrai, 1986) in form factors and is caused by
the square-root differential operator (210), which is the main characteristic in the
interactions of the charged ring.

Since experimental values (216) are described by the local quantum electrody-
namic expressions (218), by comparing the corrections (219) with the experimental
errors in (216) one can obtain

€ <6.2x10%m for Apf)

exp’
and (220)
¢} <2.4x10%cm for AuY)

exp

Ring charge correction to the Lamb shift (Brodsky and Drell, 1970) is given by

AE(2S: — 2Py) = 1 @ Ry me (221)
T e
From this we conclude that
) < 2.9 x 10 %%cm (222)

A ratio of cross-sections for the electromagnetic processes — e e,
ete” — ete",ete” — uu~, calculated by local and nonlocal ring theories, is

Ononlocal _ [VZ (—S@%)]Z ~1— 250 (223)
Olocal

in accordance with formula (212) wheve(k?¢?) = [K,(k?¢?)]%. Heres = (p; +
p2)? = W2; W is the centre-of-mass energy. Experimental data (L3 Collaboration,
1993) gives the restriction ofy:

¢, < 6.0 x 1078cm, (224)

All these bounds, (220), (222), and (224), mean that the radius of the charged
ring for leptons is smaller thar10-1°%cm, so that QED is almost local theory.

14. THE SQUARE-ROOT NONLOCAL QUANTUM
ELECTRODYNAMICS

In previous sections we have proposed a simple method allowing us to work
with the square-root operator and to give its physical interpretation. The purpose of
this section is to study local and nonlocal electromagnetic interactions of charged
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spinors, with photons within this scheme. Thus, the Lagrangian corresponding to
Eq. (7) is given by

Lo = " (X)vm? — Og(X). (225)
Instead of (225) we consider the Lagrangian density
Ly = =N{¥(x, 2)(=0)¥ (X, 22) + LY, } (226)

for the(x, A) field. Here notations

L9, = W(X, AU (A1, A2) ¥ (X, A2),

o ) (227)
N= [ [ drdiz pladni) 3 =iv" 5
W(x, A1) = (0, ¥ (X, A1),
\II(X, )\2) — <¢(Xy )"2)>
0,
and
U(r1, 22) = <)?2 )61)
are used. Equations of motion
/m dr p(L)(@ — A)¥(x,2) =0, and
/_m dx p()) (i 31/;(:; A)y” + A (X, y)) =0 (228)

for ther(x, A) fields can be obtained from the action
A= /d"’x LS (),

by using independent variations over the fiejdy, 1) andy(y, 1) and by taking
the difference betweetl, /5y (y, 1) anda(L§’¢)T/8w(y, A). Here we have used
the following obvious relations

SY (X, M) Y (X, A)
SY(y,n)  sv(y.A)
and definition

=8P(x — y)s(ri — 1)

(L3,)" = W(x, AU T (e, A2)W(X, 12).
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It is easily seen that the propagator of the fig(d) in (7) is given by Eq. (5)
or
1
D(x) = ————38¥(x /d)\ A 8(4)x /dx 1) S(X, A
(x) N (x) = o( ) (x) = p( )5((22;)

In the momentum representation expression (229) takes the form [see Section 1,
whereQ¢(p) = D(p)]

B(p) = / () B (230)
where
S p) = i}/\z_kgizp_ig (231)

is the spinor propagator with massn momentum space.

14.1. Square-Root Local Quantum Electrodynamics

Introducing electromagnetic interaction into the square-root formalism is
same as in the local theory. To ensure invariance of the Lagrangian (226) with
respect to the local gauge transformation

¥'(x, 1) = €°¥y(x, 1)
and (232)
¥ (%, 1) = e My (x, 1),

the gauge field\, (x) should be introduced into it with the transformation rule

, of
A (x)=A.(x)+ PR (233)
As a rule, the standard procedure of changing — (3, —ieA,)y in (226)
leads to the interaction Lagrangian

Lin(X) = eN[¥ (X, A1) Ay (X, 22)} (234)

in our case, wherd = y# A, (x) andN is given by (227). With (234) th& matrix
can be constructed by the usual rule:

S=Expeg,,,.T exp{ / d*x Lm(x)}, (235)
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where the symbor is defined by (17) for the spinor fields. Expec means to take
expectation value over the random variablgsIn the square-root formalism,
random variables; entering into the definition of the spinor propagator with mass

Ai are not independent and have strong correlations between them. In other words,
functionsS(x, 1) are some stochastic processes over the variabExpectation

values of these processes are defined by the requirement of the gauge invariance
of the theory and possess some properties like white noise. For example, at least
for connected diagrams in the momentum space one assumes

m

ExpedB(p)} = / di p(W) (P, 1), (236)

Expec(y"D(p1)y 2 D(p2)y ™}

1 m m . .
==§/ /‘dhdhp@ﬂMM)XW”Spphwwﬂpth”}
-mJ-m

{3()»1 —22) (A1 —22)
p(r2) p (A1)

and so on. In the general case, one gets
Expedy " D(py)y "% - - ¥ D(pn)y "}

Z/:dkPQMV”QﬁLAW”-~VW$ﬁmkWW“} (237)

}:/‘dxpuMyWQﬁPMy”QﬁzMyﬂ

Definitions (236) and (237) grant the gauge invariance of the local quantum elec-
trodynamics in the square-root formalism. Indeed, in the language of the pertur-
bation theory (or the Feynman diagrammatical techniques) the gauge invariance
of the “square-root” local QED means that every matrix element ofstheatrix

(235) defining the concrete electromagnetic processes has a definite structure, and
algebraical relations exist between them. In particular, in the momentum repre-
sentation, the so-called vacuum polarization diagram in the second order of the
perturbation theory has the form

1,0 (K) = (Keky — 9uk?)TT(K?) (238)
and the relation
B} .
B F(p, ) oo (239)
apy

is valid between the vertex functioﬁu(p, g) and the self-energy of the “sqr
electron” X(p). The relation (239) generalizes the Ward—-Takahashi identity in
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QED. Here in accordance with (236) and (237) we have
—je?

2(0) = oy

/ A (%) / dRARR) P —k A)y* (240)

and

Fu(p, @) = /d4kA((P k)?) Expedy” D(d + K)y" D(K)y")

(271)4
ie?
~ (2n)

[ 6003 [ aieai(p 1027 8@+ k 23y 8k 2
(241)
where§(p, 1) = (A — p)~t andA(k?) = (—k2 — i£)~L. For the proof of the rela-
tion (239) consider the identity
a8(p, 1)
Py

= (P, My S(p, 1) (242)

Further, it is easy to verify the identify (239) by differentiating (240) oyer

and making use of the equality (242) as well as choosing other momentum vari-
ables in (241) and assumingg= 0, p' = p+ g = p. The relations of the type

0. T.(P, O) | p2=pe—s2= O follows from the definition

0, ExpedB(py)y"B(p2)) = . / [ A diz p(1)0(02)

% &Py, 20)y" P m%
B(py) — B(p) = / d PSPy 1)
C¥poa)] ifq=pi-pn  (243)

Now let us demonstrate that the gauge invariance of the photon self-energy diagram
in the “square-root” QED and matrix element is given by

fl,.,(k) = & Expea{ [ arprity 5o+ k)y“ﬁ(p)]}

= @/ﬁ d)‘p()‘)/dinr[J/ué(ﬁ—HA(, )»)y"é(p, Nl (244)

Here we have used timedimensional gauge-invariant regularization procedure due
to 't Hooft and Veltman (1972) and the definition (237). After some calculations
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we obtain the same form as (238):

8im? n m
M, (k) = ﬁr (2 - En)(kﬂku — k?g,) [ § di p(1)
1
X / dx - x(1— x)[A% — k> (1 — x)]2 72, (245)
0

which is manifestly gauge-invariant. Investigation of the higher order matrix ele-
ments for theS matrix (235) can be carried out by a similar method as this.

14.2. Square-Root Nonlocal Quantum Electrodynamics
14.2.1. A Charge Distribution and Modification of the Photon Propagator

Distributional or nonlocal character of the propagator (28) and the wave func-
tion (29) calls for introducing the hypothesis that an electric charge of charged
“square-root” particles (say, electrons) is not pointlike and has also some distribu-
tion p(r) over space. To realize this idea, we should smear out the infinitely sharp
3 function involved in the definition of the idealized concept of a pointlike charge
by the following change

es(r) = eo(r),
where a first consistent scheme is

lim 0¢(r) = 5(r). (246)

Here the distributior,(r) describes the extended electric charge due to the exis-
tence of some parameteérdimension of length, which we call the fundamental
length. Of course, the form of the distributigp(r) is different from (9) or (30).

In a previous work (Namsrai, 1996c) we have found explicit form of this
distribution

pe(r) = —— exp(=r?/¢?), (247)
w243
which leads to the “nonlocal” Poisson equation
Agy(r) = —ep(r), (248)
and its solution is the nonlocal Coulomb potential
e r—r’
0u(r) = —/dr’M. (249)
A [r/|

This potential is, in turn, related to a nonlocal photon propagator by

) = f r e o, (r) (250)
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in the static limit. As shown in Namsrai (1996c¢) with the choice of the nonlocal
photon field

A0 = [ dy 2= Y)A) (251)
the photon propagator

AL, (x=y) = (OIT{AL(X)A(y)}I0)

— (ZIT)zlg/“/ 4 ép(x y) [psz(p)] (252)

coincides with (250) in the static limit for the momentum space. Here

pi(x) =

= o [EperEE =ed [0 @9

is the generalized distribution, and the Fourier transform is defined as

pE

(p)—exp[ } pZ = pZ +p°

in the Euclidean space. So that

pe(0) = [32(P, P)]* Iry—o (254)

as it should be. In (2549,{p) is the Fourier transform of the charge distribution
(247). The extended form of the charge distribution (253) in the Minkowski space—
time is just the generalized function investigated in Efimov (1977, 1985). We see
that the modified Coulomb law (249) with (247) is

@u(r) = (e/4rr)p(r /), (255)
whereg(x) is the probability integral
P(X) = / dte .
It is natural that in our theory, the self-energy of the extended charge is finite
e a 1 e
| = = 256
[ Erp e =5, a= (256)

and the photon propagatm,ﬁu(x) = —0uA¢(X) has no singularities at the point
x =0,




1984 Namsrai and von Geramb

Our nextaimisto construct nonlocal electromagnetic interaction of quantized fields
(15) (or (29)) and (251) with the propagators (236) (or (28)) and (252), respectively.
We call this scheme the square-root nonlocal quantum electrodynamics.

14.2.2. A Nonlocal Gauge Transformation and the Square-Root Nonlocal
Electromagnetic Interaction

Inthe nonlocal case, instead of (232) and (233) we use the following nonlocal
gauge transformations in accordance with the charge distribution (247) and the
nonlocal photon field (251):

A = AL+, F(3),
06~ viexgie [ a'yottx - 10|

and (257)
76~ Fexg ~ie [ dy sx- 91 |

This transformation gives rise to the change
oty — (% —ie f d*y p(x — y)AM(Y))I//(X)

and (258)
.7 = (e [ d*y oEx = AT

in the Lagrangian density (226). The change (258) in turn gives the interaction
Lagrangian

LE(x) = eN(w (x, A)A () (x, 42)} (259)

instead of (234). Herd = y* Al (x) and

AL(x) = / dy p2(x — Y)Au(Y).

eis the electron (“square-root”) charge andx) is its distribution.
Formally, theS matrix can be written in the form df products as in (235):

S=Expeg,, T exp{ [ d*x Lfn(x)} (260)

Investigation of matrix elements for thiS matrix is similar to the local case
(for details, see Namsrai, 1996¢) and Section 14.1.
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The construction of the perturbation series for Bimatrix (260) is possi-
ble only within the framework of a regularization procedure. In the square-root
nonlocal quantum electrodynamics it is sufficient to regularize the nonlocal pho-
ton propagator (252) and closed fermion loops. Thus, for the regularized photon
propagator in momentum space one gets

02 [T v(E) e _
= _ NS T BETTp20 12 -1

(k ) 2| /a+ioo dE Slnﬂ'se [K ( k |€)] ! (261)
where we have used the Mellin representation

V(—p2?) = exp[%] — i /;aioodg v(§) V) et

2 Joatrice  sinTE

2% 0<ac<1 (262)

Y& = rarg

for the Fourier transform of the charge densjty(x)]2. Closed fermion loops are
studied by the same method as in Section 14.1.

14.2.3. The Calculation of the Primitive Feynman Diagrams in the Square-Root
Nonlocal QED

Here for pure illustrative purposes we consider simple matrix elements for the
S matrix (260) corresponding to diagrams of the self-energy and vertex function
for the “square-root” electron. Thus, the corresponding term irthaatrix for
the diagram of self-energy is given by

/ A2z f ha p(A)p0a)—i T, A)Te(X — VWY, 23) s (263)
where
Z(x—-y)= /_ dir p(A){—1€%Y, S(X — ¥, A1)V Ae(X — Y)}.

Passing to the momentum representation and making use of our regulariza-
tion procedures that allows us to go to the Euclidean metric by uskayg—
explir/2]Kkq, ONe gets

$4(p) = / . p(3) my-i€?) [ d' &Py, S(x, 21y, 109

V(K2 o A Pe+ ke
4 E E E
/ d)uo(k)(2 )4/d e k2 y’i ))»rz'i'(F)E—kE)Zy’E EC

Here pe = (—ipo, p), ¥® = (—iyo, y), and kg = (ks, k). Taking into account
the Mellin representation (262) for the form factoi(k2¢2), and after some
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calculations, we have

o m 2 1 [o-ie dé V(S)(AZEZ)S
E“/_md)‘p (A)QE/_MO (SinE)? T(1+8) F p),  (265)

where

F(E p) = ﬁ/jdu(lg “>$<1— E—ju)g(m —pu  (266)

is a regular function in the half-plarieRet > —1. Assuming the valug?¢? to be
small, one can obtain

. m &2 ot A 02 2
500 = [ sl [ au@ - upin(1- Gu) - 12
1 vQ)

1 /
x [(3 N7z + 3O +3v D)+ 1) + 4A262v(1)(ln 2 V)

5 p? e R 1 , p?
- TZF)] — W(A — p)[(ln eI —v(O)—|—1> —Azzzv(l)ﬁ]

+ o«xZeZ)Z)}. (267)

Let us calculate the correction to the electron mass
m

am=f dkp(k)(ko—k)z—/ da p(M)E()

- o f dhp(a)lx + O =0, (268)

wherey = In[1/(1?¢?)]. Expression (268) means that in the square-root QED the
electron mass is not of electromagnetic origin.

Analogously, in accordance with the Expectation rule (237) in the momentum
space and in the Euclidean metric, the vertex function takes the form

m 2p2
Fu(pa p) = f_ d p(x){— (;:)4 / d4kE—V(EE)E — tgf )
A —ke — Ge A —ke
22+ (ke + G222+ ke? y”}'
Again passing to the Minkowski metric and using the generalized Feynman pa-
rameterization, one gets,

= m 92 —a—ioo
Iu(p1s p):/ dAp(A){—_i de v(§)

87 2 [ grice  (siNTE)?

(269)

X Y

(A20?)¢
“T+9)

Fu(E: pa, p)}, (270)
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where

Fu(; p1 P) = v Fu&; p1, P) + Fou(é: p1, D).
Here

1 1 r1 pl
. — o —B— 08
Fleipu B = s | [ [ dedpdys—a—p—petQ

and

. B 1 1 1 1 e el
Fz(éypl,p)—mfofo/odadﬂdyfs(l—a—ﬁ—y)a Q

1 .
x ﬁ[/\zm — 210, + 4M(BA, — ap,) + (P — BA)y.G
+ (ap— BQ)yu(ap — BA);
p? q? (p+ g)?
Q=,3+J/—01Vp—,3)’ﬁ—“ 2

Let us calculate the vertex function (270) for two cases: first, whenO andp
has an arbitrary value; second, whegins an arbitrary quantity ang and p; are
situated on th@-mass shell. In the first case, assuning 0 in the formula (271)
and after some standard calculations, one gets

' 1 1 1—u & p2 §
F.(&; P p)=m/0 dU( J )(1—Uﬁ>

2£upL (2% — uf
« |:U)/,L + %Aupzum} 272)

Comparing this formula with the expression (266) for the self-energy of the
“square-root” electron, it is easily seen that

FuEip,p) = —% F& D) (273)

From this identity we can obtain a very important conclusion. In the square-root
nonlocal QED constructed using the concept of the extended mass and charge
densities, the Ward-Takahashi identity is valid,

Fu(p, p) = —=——3(p). (274)

. (271)

In the second case, one can put

U(PDTu(pr, PU(P) = U(P1) A, (A)U(P) (275)
whereu(p;) andu(p) are solutions of the Dirac equations

(P—Mu(P) =0 and u(p1)(p; — 1) =0.



1988 Namsrai and von Geramb

Substituting the vertex function (270) into (275) and after some transformations,
we have

u(p1)Fu(&; p1, p)u(p) = u(p1)A (&, q)u(p). (276)
Here

p.(‘i: q) =Yu fl(‘i: q2) + Zka/qu fZ(E q )

1
Ouy = _-(V/,L]/u - VVV;L)u

06 = g [ [ [ dedparsa-—«-p-7)

X a—S, Ls_lgj (CY, ﬂi v, q )1
2
L=¢a+(1- a)z—ﬁ)/kz,

G, B, v, %) = [(1 — &)X(1 — &) + 2] — [By + £(a + B + V)] =
and
Go(e, B, 7, 0%) = 20(1 — ). (277)
To avoid infrared divergences in the vertex function we have introduced here the

parametee = ,ugh/kz, taking into account the “mass” of the photon. Finally, one
gets

r@= [ mdkp()»)[mFl(qu T Fo(a )} (279)
where
@1 e dg v(€) _
A = - /m SR Ty O e d.  @79)

Itis easy to verify that the vertex functiat, (q) satisfies the gauge-invariant
condition

quu(p1)A . (q)u(p) = 0. (280)

Let us write the first terms of the decomposition for the functiBy(g?) andF,(q?)
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over two small parameteig¢? andg?/A2:

a g2
2 A2

x {g(%g :) + %[v(1)< +2C — %3) +v/(1)“ (281)

whereo = In(x?/u5), C = 0.577215 .. is the Euler constanty = €°/47, and
x is defined in (268). And

Fi(@®) = —[X 20 —V(0)+ 5 9 _6c -z v(l)}

Fa(q?) = —% [1 — %v(l)xzﬁz}. (282)

From this last formula we can see that corrections to the anomalous magnetic
moment (AMM) of leptons are given by

/ di p(L)F2(q?) = —[1— “v(1)m2¢2 ] (283)

where we have used the properties (10) for the mass des(aifyThe first term in
(283) corresponds to the Schwinger correction obtained in local QED. From the
experimental values of the AMM of the electron and muon one gets the following
restriction on the value of the fundamental length

0<12x10%cm for Au®

exp
and

(284)

£<17x10%cm for Ap®

exp

14.2.4. The Self-Energy of the “Square-Root” Electron

Now the following question arises: how to coordinate classical (256) and
guantum (268) expressions for the electron self-energy. As seen here, the quantum
contribution (268)

e h \2
5mqu_/ dxp(x)[ 67 he 'n<FroH (285)

is even equal to zero after integration over theariable. The self-energy of the
electron in the classical theory is given by (256)

e 1
2c%rg (27)3

Here the parametep = ¢ is the electron radius. Comparing formulas (285) and
(286) shows that the quantum correction to the mass value of the electron in

SMey = (286)
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difference of the classical one depends on its mass and increases only as the
logarithmic function atg — 0. The passagk — 0 in (285) that corresponds to
the classical limit leads to an explicitly senseless result; therefore formulas (285)
and (286) say that the corresponding principle between the quantum and classical
theories is not valid in the problem of the self-energy of the electron. However, in
our scheme one can expect that the corresponding principle will satisfy exactly.
Indeed, it turns out that in the second order of the perturbation theory quantum
correctionsgmgy, goes to classical onedmg, at the limith — 0, and all higher
order contributions turn to zero t— 0. The proof of this assertation is the same
as in the Efimov (1977) nonlocal theory.

Let us consider in detalil the structure of the integral defining the corrections
to the electron mass. For this purpose we turn to the expression (264) and use the
standard definition

8 = —A[A(A2) + B(12)]
and
Z, — 1= B(\2) + 222[A'(A%) + B'(A?)],
wheresi andZ, are renormalization constants in the mass operator
% (p) = (A(P?) + B(P) P} + 84 — (Zo — 1)(B — 1),
and choose the system of reference, where the vep@taf (—=ix, 0), one gets
4 .
sm = / d2 p(3) (Zﬂ)% f d kE V() | é__z?xké' (287)

Here we have shown an explicit dependence on the Planck comstamte we
will be interested in the limih — 0. Integrating over the Euclidean angles and
some transformations later, the expression (287) takes the form

m Ao [ 2%
8m:[mdkp(k)WF/() du v(4<k—0) u)Q(u) (288)

where Q(u) = 2u + (1 — 2u)/1+ 1/u, and Ao = h/Ac is the Compton wave-
length of the electron with the “stochastic” massFrom the formulas obtained
we see that contributions to the masa have two limits (285) and (286) for
the caseg <« Ag and{ > Ag, respectively. Indeed, asymptotic behaviour of the
function Q(u) is given by

[V u<l;
Q) = {3/4u, u> 1.

On the other hand the function(u) = exp[—u/4] is the order of unit fou < 1
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and decreases rapidly far> 1, such that
foye

m e2 (%
(Sm:/ dkp(k)k—f duQ(u).
—m hc Jo

For¢ <« Ao contribution to the integrand is given by large quantities;aherefore,
24 3 (P du 3 [ig)?
/ duQ(u):—/ — =i
0 4 1 U 4 L

3 €?
sm ~ /d/\ ml&ﬂh (—) =0, (289)

i.e., we obtain the quantum field expression for the self-mass (285Y. Bokg
contribution to the integrand is defined by small values,aind therefore

oy % dqu 2
/ L duQ(u) ~ A
0 0 Ju L

and

and

1 e?
A-C-l (27)3 2¢3¢

m e?
dm =~ / dA p(2) - — - const
—m hc

i.e., we get the classical expression for the self-mass (286), which does not depend
on the Planck constant or the electron mass

Thus, formulas obtained for the corrections to the mass (285) and (286)
are valid for any relations between the fundamental ledgémd the Compton
wave length of the electraty = h/Ac, and for the limits <« Ao and¢ > Aq give
true asymptotic value for quantum and classical theories, respectively.

Finally, it should be noted that as shown in Efimov (1977) contributions from
all higher orders of the perturbation theory turn out to be zero at the llimit 0.
This assertation is valid in our case. Moreover, the equality (289) holds for the full
massive operatdxt (p) on thei-mass shell:

(p) =

d*ky,G(p — k)T k, p)A(K 290
oo [ SKnGB-RN(G-kPAK (290
wherer? = p?, pu(p) = ru(p), G andA are full Green functions of the electron
with the stochastic massand photon, and” is full vertex part. We know that
Greenfunctions of the electron and photon decreaGglgs= O(1/k) andA(k) =
O(1/k?) for k — oo. In accordance with the Ward identity,

r(p—k = 0(¢).
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From this we conclude that expression (290), like (285), diverges as a logarithmic
function and is proportional tb and therefore

m
smiy = —/ dAp(M)E(p* =2%) =0
—-m

for all orders of the perturbation theory.

In conclusion we notice that in the square-root quantum electrodynamics it
is not necessary to regularize the square-root electron mass, i.e., the physical mass
of the electronm, coincides with the bare onm,, in the Lagrangian (225).

15. EXTENDED CHARGES AND SUPERFIELD

Recent rapid and exciting developments in the theories of spread-out (ex-
tended) or nonlocal objects like strings and D and p branes, and in their duality
properties, need a practical working model allowing to shed light on those low-
energy limits by means of experimental (particle) physics. In this section we con-
sider extended electric charges like charged ring, disk, holed coin, and the torus
in an attempt to understand an essential difference between these structures in
the point of view of the supersymmetric string theory (Bailin and Love, 1994). It
turns out that all considered innermost structures of charge: except the torus, all
are associated with simple nonlocal (Efimov, 1977, 1985; Namsrai, 1986) or bilo-
cal (Yukawa, 1950a,b,c) theories with formfactors, while the charged torus gives
rise to the appearance of a new kind nonlocal theory, wherein boson and fermion
fields are generated simultaneously. Roughly speaking, the charged tori radiates
or absorbs at the same time photon and neutrino-like massless fermion.

Our construction of the theory of extended charges is based on the Feynman—
Schwinger-Yukawa correspondence rule, which asserts that in the static limit,
potentials between two sources (interacting charges) are associated to the Fourier
transform of propagators of force-transmitting particles in the momentum space
and vice versa. For example, see formulas (51)—(54), (205), (206), and Section 11.

The next step is to understand the physical meaning of square-root (Weyl,
1927) propagators «(p? —ie)~Y2 and ? — p? —ie)~Y2, (p? = p3 — p?),
which appeared in the charged and massive torus cases.

As seen below, solutions (15) and (22), and (13) and (21) with the properties
(20) allow us to shed light on the torus field by means of the square-root-operator
formalism. In other words, the fermion partner of the boson field, which are si-
multaneously generated by the torus field, is not the usual Dirac spinor but a new
kind of spinor field with random mass distribution over the torus. In the massless
limit m — 0 they become the photons (gravitons) and neutrino-like particles, the
former being carriers of electromagnetic (or gravitational) interactions. Notice that
due to the distributiorp(A) (10) in most of the cases, integration over the vari-
able i can be done onto an unit circle. This property allows us to present torus
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Fig. 2. (a) One-dimensional extended charge of the ring. (b) Two-dimensional extended charge of
the disk. (c) Two-dimensional extended charge of the holed coin.

fields (strings) onto a circle winding around the torus, indicating the importance
of square-root-operator formalism in torus physics.

15.1. One- and Two-Dimensional Extended Charge
15.1.1. Charge of the Ring

Let us consider the ring charge (Fig. 2(a)) and calculate its potential. Here the
electric charge is distributed uniformly with a linear density on a circle of the
radii £. The charge elemeile corresponding to a linear differential lengik of
the ring is given byde = ods. Sinceds = ¢dg, we gete = 27 ¢c. The potential
at the pointM, generated by the elementd of the ring is

de
A /722 + (€2 + p2 — 2p cosg)’

where we have used the cylindrical system of co-ordinates and the cosine’s theorem
for triangle OAB. After some elementary integrations we obtain the potential of
the ring in the form

_ e 2z 2
e R G o F(z’ zz+(p+e)2>’ o

dU,(M) = (291)
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whereF (%, k) is the complete elliptic integral of the first kind,

Vg g 11
KK =F(=,k)=%ZN, - k"==F 1;k? 2
(k) <2) 5 N 2<22 ) (293)
HereF(a, B; v; 2) is the hypergeometric function and
20 2n — )N
— NN +Z[( . ) } . (294)
V24 (p+£)? 2n.nl

For the case = 0 we have the well-known textbook formula
e

4n\/m'

Notice thatU,(0) = e/4x ¢ is finite at the origin.

Now a question arises: which kind of a field does the ring charge radiate or
absorb compared to the pointlike Coulomb charge? We use the standard method as
mentioned previously. Let us consider a radiation field in the direction afalves,
where momentum of the particle has the compongnts(p,, 0, 0)= (p, 0, 0),
so that the Green function associated with the ring potential is given by

Ur(z) =

Be(p) = f & e (U, (r)/e), (295)

where the potentidl,(r) is expressed by the formula (292). Taking into account
the series (293) and using the cylindrical system of co-ordinates one can represent
this function in the form

Be(p) = No - D(p), p=+p2 (296)
Here
B/ (p) = 4”5”/ dp -p”“/ dz cospdZ2 + (p + £)] "2 (297)
0 0

and notation\, is used from (294). The last integral is calculated explicitly.
I =/ dzcospdZ2 + (p + £)2 "2
0

_ _(2(€+p)
VT p

Now let us use the Mellin representation for the Bessel funcKg(e) of the
imaginary argument

VEL P 1 (=)
VL D /ﬂ+,oo sing& I'(1 4+ £) F(le) e, (298)

)n cosmn - F(% — n) Kn(p(p + £)).

Ku(z) =
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where 2 < —B. So that expression (297) takes the form

~ r'(n+2) _
DM(p) = 7 ——— 2 02M - (p2e3)E1, 299
+(P) ”r(%+n) g (pE9) (299)
where we have used short notation
—p—ico (i _
Me = = L = Gré-n) 4o
2 ) piioe SiPmE(1—264+2n)T(ETC(Q+26 —n)
(300)

Finally, in the four-dimensional momentum space the Green function of the
nonlocal photon field generated by the ring charge acquires the form

~ 1
Dr(p) = — 5, =%, P* = p5 - " (301)
where
rn+2) «n
Vi(—p??) = Ny———2D 302
(—p2t)=n "t d) () (302)
and
Br(p) = Me[—p*¢%)~. (303)

HereN, andM; are given by (294) and (300). Further, we use the Mellin represen-
tation (303), displace its integration contour to the right, and take corresponding
residues. Then the resulting form factd(— p2¢?) converges very well. For ex-
ample, sum of the first 11 terms in (299) is

Bi(p) = —

W= 5211
Thus, we have arrived at the Efimov (1977) nonlocal theory with form factor (302)
(see, also, Namsrai, 1986) for the ring charge case.

02+ O(p?e%). (304)

15.1.2. Charge of the Disc

In this case, the surface element of charge defineleas Ads- sdy, where
A is a surface charge density. Here thin ring of radiwnd widthds on the disc
with radii ¢ is considered (Fig. 2b). For the disc charge, expression (292) for the
potential acquires the form

A [t 2 1
Ug(M) = —/ ds~s/ de . (305)
4 Jo 0 V72 4+ 82 + p2 — 2sp cosp
After similar and elementary calculations as shown previously one gets
23¢?

+ O(p%¢%, (306)

. 1 202
Da(P) = —z VPO~ — . " Toa 1
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where
2oy _F(n+2)~n
Va(—pE?) = 7Ny 7F(n+%) Dy(p) (307)
and
N _ . 1 _ n2p21
Da(p) = Ms - 7= [P’ (308)

These formulas say that two-dimensional charged disc radiates or absorbs nonlocal
photon fields, no other physical characteristics exist here.
15.1.3. Charge of the Holed Thin Coin
In this case potential (305) is reduced to the form (Fig. 2c)
r (R o 1
Uhcz—/ ds~s/ de , (309)
4 )y 0 V22 + 2 + p? — 2pscosy

whereRandr are big and small radius of the holed coin. Propagator of the nonlocal
photon generated by the charged holed thin coin is given by

~ 1
Dne(p) = mvhc(— p2 Rz)- (310)
Here
r'n+2) xn
Vie(—p°R?) = 7Ny ————2D 311
he(—P ) =Ny F(n+%) hc(p) ( )
and

~n R2 1 2 2 r\%+2
D = Mg - —Rp|I1- (= , 312
P = M R - ()| e
whereN, andM; are given by (294) and (300), respectively.

Thus we obtain similar results as in the ring and disc charges cases, as it
should.

15.2. Three-Dimensional Extended Charge
15.2.1. Charge of the Torus and Its Potential

Now we turn to study a very interesting three-dimensional object, where the
electric charge is distributed uniformly on the surface of the torus.

At first sight one may think that the torus has a complicated geometrical
structure to set up its potential. However, if we look at it carefully we can observe its
nice geometric construction, having common characteristics with the ring, except
for an extra one-degree-of-freedom winding around the torus.



Square-Root Operator Quantization and Nonlocality 1997

Fig. 3. Three-dimensional extended charge of the torus.

Let us consider the surface differential element (protruberant trapezisim)
on the torus, the centre of which belongs to the point N (Fig. 3). Further, we trace
two lines from the point N: AN= h is perpendicular to the plane OXY and ND
crosses with the central line of the torus, i.e. NOR —r)/2. An angle< ADN
is denoted by, 0 < « < 2. Thus, by construction

NM?2 = (z — h)? + AB?, (313)
where

R—r
h=

sina, AB? = p? + L2 — 2pL cosg,

(314)
R—r
L=r+ T(l—COSOt)

Since the medium line of the trapeziudais ON- dg = +/h2 4 L2dg, its area is
. R_ 2 R—r\2
ds= (%)da\/o + Tr(l— cos<x)> + (Tr) sirf « - do.

(315)
Thus, the element of charge corresponding to the surface differentialdeoh
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the torus is defined as

R R —
>\/L2+h2dad<p:—r~k-r /142 Sinzgdadgo

2
(316)

whereq? = R?/r? — 1, A is the surface charge densigyjs the polar angle (&
¢ < 2m), and« is the winding angle around the torus. The potential element
dUr(M) generated by the chargie of the torus at the point M given by

de
47 vVNM?'

wheredeand NM are defined by expressions (316) and (313).
Integration over the polar angl (as was done in the ring charge case) gives

2n 1
= - z h2
Ur(z p) = 7A(R r)/o daﬁmwz—h)%(pﬂﬁ
XEF z 2\/5
7 \2 J(z—h2+(p+L)2)’

where parameteils andh are given by (314). We see that potential form (318) is
very similar to the ring charge one. This allows us to integrate all results obtained
in the torus case up to the end. Let us calculate the surface of the torus. From (316)

it follows
T r2
S=¢ds=4rR(R-r)E X 1—@ .

z

—r
de=xds= 21
e ] ( 5

dUr(M) = (317)

(318)

The torus potential (318) is also finite at the origin

e

Ur(0) = 8RE<%, - %>,

whereE(r/2, k) is the complete elliptic integral of the second kind.

15.2.2. The Green Function Generated by Charge of Torus

According to the general rule expounding in previous sections, the Green
function caused by the torus charge is given by

Bu(p) = / o e (Ur/e) (319)
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Making use of formulas (315) and (316), one can easily calculate the full charge
of the torus

R— 2 2 2
a:x(%)/o d<p/0 da\/L2+h2=4nR(R—r)xE(%,,/1—%).
(320)

Now we use the cylindrical system of co-ordinates and carry out some calcu-
lations as in the ring charge case. The result reads

~ F(N+2) «n
Di(p) = 7N, - ———=D;(p), 321
t(p) = 7 Nn Fn+d) (p) (321)
where
D{(p) = %(Rz r)/ da v/ L2+ h2ePML2M, (—p2L2)5 L. (322)
0

Here definitions oN, andM; are the same as in (294) and (300).
Making use of the Mellin representation

L[ dpg (phy¥

; 1
ph— — —— 7 __|1+iph——— —1<y<
=3 _tice SINTP F(1+2ﬂ)[ +1p 1+2ﬂ]' (l<y<0
(323)
one can see that propagator (321) consists of two different parts
= ~ph ~f
Du(p) = B7'(P) + Dy(p), (324)

where

~ 1 ~
B!"(p) = mvtph(— p’R?),  DBy(p) = >

i
7.8th(— p*R?).

(325)
Here
'(n+2) ~ph
V(= p?R?) = 7N, - —— 2 BPN(p), 326
t( p ) =Ny F(n+%) nt(p) ( )
and
r'(n+2) «¢
VI(=p?R?) = 7N, —————= D (p). 327
i (—p°R) == fn+ ) nt(P) (327)

Following expressions hold for functiorl&ﬂ['( p) and I5Lt( p):

~ph r 2n . o 1
Dgt(p):47'[—E A d(x‘/1+qzs|nzzz

Triee dﬂ(%)w 21 2\B+&
x /Hiw sinepr(L 1 2p) P (328)
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and

~f r 2 ] Y 1
Dm(p):471—E/O da 1+q25|n2§.h.5

e dﬁ(%)% 2| 2\B+E
x /Mm sineprz+26) P ) 56

whereq? = %2 — 1; E is the complete elliptic integral of the second kind.

Assumingp’R? « 1 one can calculate integrals (328) and (329). Displac-
ing contours in (328) and (329) to the right and taking residues, and after some
elementary integration over the angl®ne gets

r2p? 46 r 1/_R?
VP~ p?R?) = 1 234 — “(2=E-F-E
CEPR) =1t e 1Bt 3R EVCE

R? 2 R?
X 1y(14- —101)F+ S E
+15E(R+r)2[ ( R? ) Tz

r2 ré
% (404— 519 —1—289@)“ + O(p*R?) (330)
and
2Ry~ R_L(R 1 2R3
VICRR) = g e (7 - ) FOWRY. @)

More shortly,

101

VPR ~ 14—
v (=P°R) t511.15

RZ p2
2
V(PR ~ R (332)

Functionsg(%, /1 — [{2) andF(%,,/1— %) in (330) and (331) are complete
elliptic integrals of the second and the first kinds, respectively. It should be noted
that it is impossible to explain formulas (324) and (325) as one particle exchange
between interactions of the torus charges. This problem will be discussed in
Section 15.4.

Generalization of formulas (324)—(329) for the massive case is not difficult.
By the common rule we can changg? — m? — p?in these formulas and obtain
the nonlocal Klein—Gordon propagator and its square-root version.
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15.3. The Square-Root Green Function and Physical Interpretation

From expression (325) we see that in torus physics the square-root Green
function appears. That is,

i . i , boda P+ mx
7=I|m—=l|m—/ —,
/_p2_i8 m—0 m2_p2_i€ m-0m J_4 1_)\’2)\2m2—p2—|8
(333)
wherep = y*p*; " are the Diragy matrices. Since
1 [1 o _,
r)ivi—i2
we obtain the propagator of a massless fermion in the limit- 0 as
~ . P
A =i—. 334
(P =i, (334)
For x space, first term in (324) gives the nonlocal photon propagator
. 1 o eoh
h 4 p
Div(X) = 'guvwfd p €P*Dy ().

Now let us consider the case when the mass of a particle is distributed uni-
formly on the torus: Its full mass is

T r2
mtzygdmt=4nR(R—r)xE<§, 1—§), (335)

wherey is the surface density of a particle mass. On the other hand, equation of
motion for some unknown particle and its Green function satisfy Egs. (7) and (5),
and its energy is given by

1
E:/ p(1) dA v/p? + MPAZ = 2\/m2+p2E(z,L> (336)
-1

T 2" Jm2 1 p2

or
E = Egin- NJ, - k2", (337)
whereEgi, = /m?2 + p2, k = m/Egin, and

0 2
) (2n — 1! 1
anl_;[ 2n.n! 2n—1

We see that for square-root particles the Einstein or relativistic formula for the
particle’s energy is changes little relative to the formulas (336) and (337). For
ultrarelativistic particles this difference becomes smaller and smaller.

This fact tells us that in the processes of radiation of particles by the charge
of the torus, the energy balance may be lost but it does not take place. From the
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Einstein formula for energy of a particle, energy of the torus is

c? 4rR(R—r)xc? r2
E = m _RR—OxCp fx fy r* (338)
vZ / v? 2 R2?
T2 2

wherev; is the torus velocity. To compensate energy loss in the processes of
radiation the torus could change its innermost structure, i.e., parameiatskR
defining its structure become changeable quantities in accordance with formula
(336). For example, lat run between 0 an®, then the case = 0 gives the rest
energy of the torus, namely

m? = 47 R?y, (339)

so that formula (338) takes the form

E <R_r>E<%’V1_%>mocz
CUR S aimvge
which is co-ordinated with formula (336), as it should. In other words, the torus
is able to gain energy from vacuum by changing its innermost structure defined
by parameters andR. The changing structure of the torus may be understood in
terms of the Lorentz contraction. Indeed, at rest the torus has maximum surface
(i.e., surface of the sphere (339), which corresponds=00) and the hole in it
has not appeared. When the torus moves, its transverse size begins to contract,
and a hole starts to form in the torus and its surface becomes smaller and smaller.
On the other hand, when the torus turns to move, its energy is increased due to
the Lorentz factor/1 — vZ/c? in (340). Thus, we observe an important fact that
energy of a particle (square-root) depends, at the same time, on its velocity and on
its size (structure).
In the limiting casev; = ¢ surface of the torus tends to zero (ile+= R),
as does the Lorentz factor, simultaneously. As a result a particle ring acquires a
finite-energy value, traveling at the speed of light, as it should. Notice that in this
limiting case the torus is converted to the ring with rdgliiOn the contrary, when
the torus loses its energy in processes of radiations its speed decreases and at the
same time its surface increases. As a result, the torus is able to gain energy from
vacuum. Further, the torus with gained energy is again radiated and so on. This
chain of processes is repeated infinite times—at least up to the time when the torus
goes to rest.
All these statements can be expressed by a single mathematical formula.
Indeed, comparing the two formulas (336) and (340)

;/m2 + p%E (

0<r <R, (340)

T m R—r m e(” /1 r2
2, /m2+p2 R /1_ﬂ2 2' R2
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and assuming

Vm2 4+ p? = m(1+ g2 = R—I;rm(l - B2,

one obtains

2 R—r\? [0 for r=0,
p= 1_<T> _{1 for 1 =R, (341)
as it should. Her@ = mv;, andg? = v2/c2.

This deeper connection between gain of energy by changing structure of a
particle may be also understood in terms of fluctuation in space—time points around
the torus. We suppose that the motion of the torus satisfies the square-root-operator
equation like (7). Then for its Green function there exists another representation

s = [ ooya oot [t P
= /lldx 13o(0) S (xA, m), (342)
and for the wave function
o(X) = [ 11 d A2 p(\) ¥ (XA, m). (343)

Here ¢r(xA, m) and ¢ (xA, m) are the Dirac spinor of mags and its Green
function but space—time points}. = XpA, XA, have the random distributigm())
with different weightsi® and 2%2, depending on the physical characteristics of
the torus.

Finally, after integration of the variableone can represent the Green func-
tion: its the Euclidean version and the plane wave solution of a square-root particle
in the following forms

31 m+ p 53, (px)?
) = g 2ny? /d4pm(px)l':2<§’§’3’_ 4 ) (344)

3 1 1 /1 5 m?2x2 m?xg
xe) = —ipht— N Zp(Z1, 21 RE)
Se(xe) v axEanxE{xE <2 2 4 > 4 }

2y 2
2 2 4
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and

u(p) 1 15\ (517 (px3
W(X)Z(1_I)E(Zn)g{B(E'Z)F(Z'E'Z’_ 40>

17 7.3 9 (px);3
+(DX)OB(§,Z>F<Z,§,Z,— 40)}. (345)

Herepx = poXo — pX, (pX)o =ot —pX,w = Jm2 + p2, Xg = /xf 4+t X;%y
B(X,y) =T(X)I(y)/T(x +y)andF =; Fy(«; 8, v; 2) is the generalized hyper-
geometric function.

15.4. Appearance of a Superfield in the Radiation of the Torus Charge

Formulas (324) and (325) allow us to suppose that the torus charges radiate
absorb complicated fields consisting of the nonlocal photon and nonlocal massless
spinor fields. We call these fields superfields. However, as seen above in this mixed
(or super)fields ratiof = n,, /Npnoting) Of NUMbers of photons and massless spinors
generated simultaneously by the charge of the torus is of the ordet/6f'R,
whereR s the big radius of the torus. On the other hand, from experimental data on
testing local guantum electrodynamics itis well-known that if the electrical charge,
say the electron possesses some innermost structure defined by the paRameter
then its value is smaller or of the order &~ 10~'5cm. Therefore the ratio
y ~ 10, In this connection the following question arises. Why is it difficult to
detect superpartners of usual particles? The simple answer is that they exist in
very small portions with respect to usual particles, in superfield mixtures. In the
language of supersymmetry, photon and photino fields can be formally present in
the superfield form

_ (0570A,
= 5y
whereA, andy are the photon and the massless spinorfiéldede_ are Grassman

variables. By means of these fields the Green function (324)space can be
written in the form

), ¢ = (00"0A,, V660), (346)

Dux ) = [ & [ FH(OT 9" 00000
= 7", Dpn(X — y) + D'(x — y). (347)
Here we have used the definitons

oto¥ =" + 201, 0c"'6 =0,
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and
/d2e 02 = /d29_§2 =1 (348)

Fourier components dDpn(x) and Df(x) are given by (324) and (325).
In the limit R — 0 we can also write a formal equation

2, om0 1,00%6 0 0-3V0A%\ _
//dede( 0 2Ry -390 Gy ) =0 (349)

Here A, andy° are the local photon and local massless spinor fields. From this it
follows

2
n, - OA° + 3 R-v/Oy° =0, (350)

wheren, is an arbitrary unit constant vector belonging to the direction of the
radiation.

In accordance with formulas (324) and (325) for the massive egse—
m? — p2. Expressions (346), (347), (349), and (350) are reduced to the forms

o= (62@1{0(%)) o dm= (9006, A()066),  (351)
DP(x—y) = [ &% [ &OIT (3400n(yI0

1
=D"x—vy)+ /—1 dr p(W)S™(x — y, mA), (352)

— (M=) -0 0 B 00¢p(x)\ _
/dZQ/d29< 0 2 RJ/M2— u~999> ( OA(X) ) =0, (359

and
(M — O)p(x) — > Ri (\/m2 - m) A(x) = 0. (354)
3

wheregp(x) is the Klein—Gordon scalar particle of massand A(x) is the square
root particle defined by the expression

1
A(X) = /_ 1dx p(W) ¥ (x, mA) (355)

Here y(x, md) is the usual Dirac spinor with massi. FunctionsD™(x — y)
andS™(x — y, md) in (352) are nonlocal scalar and nonlocal spinor propagators,
respectively.

Thus, we see that in physics of the torus superfields the inescapable appear.
Of course, when the size of the torus tends to zero the superpartners of the photon
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and of usual scalar fields disappear in co-ordinating with the point of view of
local quantum field theory. Electromagnetic interaction of the charged torus will
be presented elsewhere.

APPENDIX: RADIATION IN LONGITUDINAL DIRECTIONS

In the above sections we have considered transverse radiations taking place
in directions perpendicular to the plane in which extended charges are located.
Strictly speaking, some longitudinal radiations may occur in directions parallel to
thez = 0 plane. Now we study such possibilities. In this case, the Green function
(295) generated by the ring potential (292) takes the form

00 00 2
~long _ —ipp Ur(p, Z)]
D, "(p) /_OO dZ/0 dp pe /0 de [4 . (356)

e

Using series (293) with (294) one can see that the main mad&{® of (356) is
diverged. We regularize it as follows. Integration of theariable gives

_ /ml(n)
S r(n+3)

where divergence is associated with fidunctionI"(0) = oco.
One can easily calculate integration over the variable

|2 = 4n£r| /w dp )Ol+n()0 _}_E)—Zne—ipl) — i /_y_ioo d—ﬁ;
0 2i J_,tieo SiNmB (14 28)

ip =2 /0 ” d4Z + (p + €32 (p+ 02, (357)

. {u(p, B 1o p)}. (358)

We introduce regularization procedure into these integraknd I, which are
defined by

Iy = 4"et? /1 dyy ™" (y — 1)

=4z [Cayyouy -ty -0t (@59)

and
I, = 4"g2P+3 liLno'/loo dy y 2 (y — 1)z # Yoy — 1), (360)
Herevi=v,=2n,u1 =n—-28—-2,u, =n—2B8— 3, anda is an arbitrary

constant arisen from the regularization of the propagator in the longitudinal
directions.
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Taking into account the integrals (357)—(360) one gets

<long, . _ * [(2n — 1)1 )2 n T+ 2
D, (p)_2n{§{ o FZ(H%){@OO{ — 5

/W 4 (—p2e)
y ey

y+ioco Siﬂn’ﬁ F(l + 2/3) {F(_Z,B +n— l)F(n +28 + 2)

x F@n+1,n-28—-1;2;a ) + \i/p_z_f)zr(—zle +n-2)
xT(N+28+3)F(@n+1,n—28—2; 2;a1)} (361)
where we have used the hypergeometric function’s property
iigﬁoﬁl:(a,ﬂ;y;z):a~,8-zF(oz+1,ﬂ+1; 2;2) (362)

and the conditional notationif2— 1)!! = 1 forn = 0, 1. In (361), for the first and
second terms-1< y < —1/2 and—3/2< y < —1, respectively. We see from
(361) that the principle modules= 0 in infinite series tends to zero.

Now we should remove regularization by taking limit= 0; however, due
to an arbitrary choice of the parameteone can suppose = 1/, and therefore
whole integral (361) equals to zero. In other words, after removal of regularization
its trace does not remain in the expression of the Green function. As a result,
radiations by extended charges like ring, disk, holed coin and torus do not take
place in the longitudinal directions.
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